

jasonk00@hotmail.com
Typewritten text
An AmigaGuide conversion from F1 Licenceware disks
F1-136A and F1-136B.

jasonk00@hotmail.com
Typewritten text
version 1.1

Credits
I should like to take this opportunity of thanking those people who helped in the writing of this guide:
Jonathan Rutherford who gave valuable comments; Mark Sims and Noel Baldacchino for their programs
and suggestions; Kevin Winspear for editing the text into AmigaGuide format. Special thanks must go
to my parents, Tony and Barbara, for purchasing the equipment used to create this guide and for proof-
reading. Finally I am grateful to Acid Software, the purveyors of quality software on the Amiga.

Neil Wright, Mickley 1996

Preface
This guide is written for new and experienced users of Blitz Basic 2, the revolutionary BASIC language
for the Amiga. A GUIDE TO BLITZ BASIC is designed as a complete reference guide, rather than a step-
by-step programming tutorial; it will rapidly become one of your most valuable reference works. The
guide begins with the basics of programming and by the time you reach its end you will have been
introduced to the main features of the Blitz Basic language.

It contains an explanation of every single Blitz command, gives a useful example in each case, and tells
you about known bugs and how to work round them. The heart of the guide is a self-instructional Blitz
Basic course, taking the reader through basic programming concepts, math commands, graphics, music
and sound effects. Shapes, sprites and Intuition are all covered in detail.

You will find the guide most pleasurable if you work through the examples as you read it. Programming
is primarily a practical activity and you are encouraged at times to increase understanding of Blitz Basic
by creating your own programs.

If you are learning to program Blitz as a hobby you will find it absorbing and intellectually challenging.
Even the most inexperienced user will soon develop an appetite for Blitz. After all, programming is fun.

Disk 2 of the guide contains all of the examples in Blitz Basic format, together with several useful
programs and game demos.

Contents
1. The Basics

1.1 Welcome to Blitz Basic 1
1.2 Using this guide ... 1
1.3 Basic programming concepts 2
1.3.1 Functions, statements & commands 2
1.4 Amiga Vs Blitz ... 3
1.5 Label Definitions .. 5
1.5.1 Restrictions ... 6
1.6 Variables .. 6
1.7 Numeric types .. 9
1.7.1 Manipulating quick numbers 11
1.8 NewTypes .. 12
1.8.1 NewType fields .. 13
1.8.2 Restrictions .. 13
1.8.3 NewType in action ... 14
1.9 Constants ... 15
1.10 Strings ... 15
1.11 Blitz Basic operators 16
1.11.1 Relational operators 17
1.11.2 Logical operators ... 18
1.12 Using operators with strings 19
1.12.1 Concatenation ... 19
1.12.2 Relational operators 19
1.13 Arrays .. 20
1.13.1 List arrays ... 21
1.13.2 Sorting arrays .. 29
1.14 Program control ... 32
1.15 Using data .. 33
1.16 End-of-Chapter summary 35

2. String Functions

2.1 Strings and roundabouts 37
2.2 Manipulating strings 38
2.3 String searching .. 43
2.3.1 Searching for characters in a string 43
2.3.2 Replacing characters in a string 44
2.3.3 Case sensitivity .. 44
2.4 Converting strings .. 47
2.5 Obtaining string information 50
2.6 Character strings ... 52
2.6.1 Integers .. 53
2.6.2 Long values ... 53
2.6.3 Quick values .. 54
2.7 End-of-Chapter summary 55

3. Mathematics

3.1 Arithmetical operators 57
3.2 Sign on the dotted line 57
3.3 Floating point numbers 60
3.4 Standard mathematical functions 62
3.5 Trigonometry .. 64
3.6 Random numbers .. 68
3.7 Machine code .. 69
3.8 End-of-Chapter summary 73

4. Control Structures

4.1 Unconditional jumps 75
4.2 Conditional jumps and structured tests 78
4.3 Conditional loops ... 86
4.4 Unconditional loops 88
4.5 Controlled loops .. 89
4.6 Interrupt handling .. 90
4.7 Error handling .. 93
4.8 Procedures .. 96
4.8.1 Statement-type procedures 96
4.8.2 Function-type procedures 99
4.8.3 Global variables ... 101
4.8.4 Some useful procedures 101
4.9 End-of-Chapter summary 104

5. Input/Output

5.1 Text ... 105
5.1.1 Printing on screen 105
5.1.2 Formatting numeric strings 107
5.1.3 Changing the text style 108
5.1.4 Setting the text colour 110
5.1.5 The text colour .. 112
5.2 The Keyboard ... 114
5.2.1 Reading the keyboard 115
5.3 The Joystick ... 120
5.4 Reading the mouse status 123
5.4.1 The mouse pointer .. 127
5.5 File access .. 128
5.5.1 File requesters .. 128
5.5.2 Opening a file ... 129
5.5.3 Examining files .. 130
5.5.4 Deleting files ... 133
5.5.5 Sequential files ... 133
5.5.6 Random access files 137
5.5.7 Advanced file access 139
5.6 End-of-Chapter summary 140

6. BitMaps and Slices

6.1 Creating a BitMap .. 142
6.1.2 Manipulating BitMaps 143
6.1.3 Loading and saving BitMaps 149
6.1.4 Display synchronisation 150
6.2 Defining a Slice ... 152
6.2.1 Syntax 1 ... 152
6.2.2 Syntax 2 ... 154
6.2.3 Manipulating Slices 155
6.2.4 Displaying a BitMap in a Slice 157
6.3 End-of-Chapter summary 161

7. Graphics

7.1 2D Drawing ... 163
7.1.1 Clearing with colour 163
7.1.2 Gunpowder plot ... 164
7.1.3 A few pointers ... 165
7.1.4 It's a fine line ... 166
7.1.5 Boxing clever .. 167
7.1.6 Circle circus .. 169
7.1.7 Polygon power .. 170
7.1.8 Fill her up! ... 172
7.2 Palettes ... 174
7.2.1 Loading a palette object 174
7.2.2 Controlling palette objects 175
7.2.3 Manipulating palettes 178
7.3 Fades .. 181
7.3.1 Fading into and out of reality 181
7.3.2 Manual fading .. 182
7.4 Colour cycling ... 183
7.5 Copper Lists ... 185
7.5.1 Copper load of this 186
7.5.2 Custom Copper Lists 187
7.5.3 Copper List functions 189
7.6 IFF Animation .. 190
7.6.1 Animated antics .. 190
7.6.2 A full example ... 193
7.7 End-of-Chapter summary 194

8. Sprites and Shapes

8.1 Sprites .. 195
8.1.1 Loading sprites from disk 196
8.1.2 Saving sprites to disk 197
8.1.3 Sprite commands .. 197
8.2 Shapes ... 201
8.2.1 Loading and saving shapes 202
8.2.2 Grabbing shapes .. 204
8.2.3 Manipulating shapes 205

8.2.4 Shape functions .. 207
8.2.5 Automatic shape flipping 208
8.2.6 Shape scaling and rotation 210
8.2.7 Cookiecuts ... 212
8.3 Blitting ... 213
8.3.1 A simple blit .. 214
8.3.2 Blit modes ... 216
8.3.3 Queue blits .. 219
8.3.4 Buffer blits ... 221
8.3.5 Stencil blits .. 223
8.4 Detecting Collisions 226
8.4.1 Colours and sprites 226
8.4.2 Executing collision detection 230
8.4.3 Collision checking 231
8.4.4 Sprite collisions .. 231
8.4.5 Shape collisions ... 232
8.4.6 Shape and sprite collisions 234
8.4.7 Sprite area collisions 235
8.4.8 Rectangular area collisions 236
8.5 End-of-Chapter summary 237

9. Audio

9.1 Pump up the volume 238
9.2 Rave the waves ... 240
9.3 Samples .. 241
9.3.1 Playing samples from memory 241
9.3.2 Playing samples from disk 244
9.3.3 Manipulating samples 244
9.4 Playing Tracker modules 246
9.5 Med modules .. 248
9.5.1 Playing Med modules 248
9.5.2 Manipulating Med modules 250
9.6 Speech ... 254
9.6.1 Walkie-Talkie .. 254
9.6.2 It's a foreign language 256
9.7 End-of-Chapter summary 257

10. Screens

10.1 Defining a screen .. 258
10.1.1 Syntax 1 ... 258
10.1.2 Syntax 2 ... 259
10.1.3 Interlaced screens 261
10.1.4 Extra Half-Brite ... 261
10.1.5 Hold And Modify .. 261
10.1.6 Screen BitMaps ... 262
10.2 Controlling screens 263
10.3 Screen priority .. 263
10.4 Manipulating screens 264
10.5 Screen functions ... 268

10.6 IFF screens .. 270
10.6.1 Loading and saving screens 270
10.6.2 ILBM ... 271
10.7 End-of-Chapter summary 275

11. Windows

11.1 Opening a window ... 276
11.1.1 Super-BitMap windows 277
11.2 Manipulating windows 280
11.2.1 Moving between windows 280
11.2.2 Closing a window ... 281
11.2.3 Activating a window 282
11.2.4 Window titles .. 283
11.2.5 Altering window menus 283
11.2.6 Moving a window .. 284
11.2.7 Window scrolling ... 284
11.2.8 Window sizing .. 285
11.2.9 Window BitMaps ... 286
11.3 Window functions ... 287
11.3.1 Window dimensions .. 287
11.3.2 Window RastPort .. 290
11.4 Window events .. 291
11.4.1 IDCMP flags .. 291
11.4.2 Defining IDCMP flags 291
11.4.3 Adding IDCMP flags 293
11.4.4 Subtracting IDCMP flags 294
11.4.5 Window event functions 295
11.4.6 Gadget events .. 297
11.4.7 Menu events .. 297
11.4.8 Keyboard events .. 299
11.4.9 Clearing the event queue 301
11.5 Window text .. 301
11.5.1 Changing the text style 302
11.5.2 Setting the text colour 303
11.5.3 Changing the text mode 304
11.5.4 The text cursor .. 305
11.6 Window input ... 306
11.6.1 Reading the keyboard 307
11.6.2 The input cursor ... 308
11.7 The mouse pointer .. 310
11.7.1 Mouse functions .. 310
11.7.2 Mouse buttons .. 312
11.7.3 The mouse pointer .. 312
11.8 Window graphics .. 313
11.9 End-of-Chapter summary 317

12. Menus

12.1 Defining menus ... 318
12.1.1 Text menu items .. 319

12.1.2 Shape menu items ... 321
12.2 Creating menus ... 323
12.3 Manipulating menus 324
12.4 A full example ... 327
12.5 End-of-Chapter summary 328

13. Gadgets

13.1 Text gadgets ... 330
13.1.1 Cycling text gadgets 332
13.2 Shape gadgets .. 334
13.3 String gadgets ... 335
13.3.1 Manipulating string gadgets 337
13.4 Gadget groups .. 339
13.5 Proportional gadgets 340
13.6 Gadget borders ... 347
13.7 Disabling gadgets .. 349
13.8 The GadTools Library 350
13.8.1 Basics of GadTools 350
13.8.2 Numeric gadgets .. 352
13.8.3 Text and string gadgets 355
13.8.4 Check box gadgets .. 358
13.8.5 Cycle gadgets .. 358
13.8.6 List gadgets ... 359
13.8.7 Highlight gadgets .. 361
13.8.8 Palette gadgets .. 361
13.8.9 Proportional gadgets 362
13.8.10 Shape gadgets .. 363
13.8.11 Gadget borders ... 364
13.8.12 Manipulating gadgets 365
13.9 End-of-Chapter summary 367

14. AGA

14.1 Advanced Graphics Architecture 368
14.2 Creating a CopList 368
14.2.1 Multiple CopLists .. 371
14.2.2 Non-AGA CopLists ... 371
14.3 Displaying a BitMap in a CopList 373
14.4 Palettes ... 374
14.5 A full example ... 377
14.6 AGA Sprite handling 377
14.7 End-of-Chapter summary 380

15. System functions

15.1 Display heights .. 381
15.2 Object handling .. 382
15.3 System date and time 385
15.4 Workbench functions 392
15.5 Food processor ... 394
15.6 BREXX .. 395

15.6.1 Emulating user input 395
15.6.2 Recording tape objects 398
15.6.3 Playing tape objects 399
15.6.4 BREXX functions .. 401
15.6.5 Loading and saving tape objects 403
15.6.6 Recording BREXX commands 404
15.6.7 Macro keys ... 405
15.7 End-of-Chapter summary 407

16. Advanced programming

16.1 Compiler directives 408
16.1.1 Include files .. 408
16.1.2 Conditional compiling 411
16.1.3 Macros ... 414
16.2 Assembler .. 416
16.3 End-of-Chapter summary 419

17. Program start up

17.1 Executable files ... 420
17.1.1 CLI Parameters ... 422
17.2 Runtime program start up 424
17.3 End-of-Chapter summary 425

18. The Future

18.1 The Blitz User Group 426
18.2 Blitz User International 426
18.3 Blitz User Magazine 427
18.4 Blitz User Disk Magazine 427
18.5 Magazine columns ... 427
18.6 Useful contacts .. 428

Appendix A: Blitz Basic Applications

 A.1 Shapesmaker ... 429
 A.1.1 Loading an IFF file 429
 A.1.2 Shapes or sprites? 429
 A.1.3 Detention centre .. 430
 A.1.4 Masking tape .. 430
 A.1.5 Preaching to the converted 430
 A.2 MapEdit ... 430
 A.2.1 First steps ... 430
 A.2.2 Starting from scratch 431
 A.2.3 I'm a map - edit me! 432
 A.3 Shape-Ed V2 ... 432
 A.4 BobEd V1.2 .. 433
 A.5 Blitz-Case .. 433

Appendix B: Useful Programs

 B.1 X-Plane Starfield 435
 B.2 Z-Plane Starfield 436
 B.3 Mandelbrot .. 437
 B.4 Mirrored Text ... 438
 B.5 System Reset .. 439
 B.6 DF1: Test ... 439
 B.7 Splerge! .. 440
 B.8 Fireworks ... 441
 B.9 Scrolling Text .. 442
 B.10 Chipset? .. 443

Appendix C: Error Messages

 C.1 You're bugging me 444
 C.2 Blitz error messages 444

Appendix D: Glossary

 D.1 Glossary of terms 455

1

Chapter 1 : The Basics
A couple of years ago the computer press speculated on Commodore's expected domination of the
home computer market and the continuing success of the Amiga. Events in 1994 confirmed both,
though no-one could have anticipated the eccentric mishandling of the CD32 console and the
subsequent caution with which the machine was to be regarded by manufacturers and buyers alike.

At the back end of 1994 it was still uncertain whether the Amiga - and the CD32 especially - would sell
in quantities hoped for by Commodore, and which would justify large investment by software houses.
They didn't, and the mighty Commodore was destroyed.

However, it hasn't been all doom and gloom. The advent of high-level programming languages, such as
Blitz Basic 2, is just one sign amongst many that software development on the Amiga is far from dead.

1.1 Welcome to Blitz Basic
BASIC stands for Beginners All-Purpose Symbolic Instruction Code. It uses an easily grasped mixture of
English, numbers, strings, arithmetic signs and parameters which will enable you to start programming
without having to learn a daunting low-level language such as Assembly Language. BASIC is a high-
level language which was first devised for education purposes only, but during recent years it has
undergone many improvements and is now widely used throughout the Amiga world in the form of
Blitz Basic 2.

A few years ago Blitz Basic was a breakthrough, the first programming language that ran anywhere near
as fast as Assembly Language (with the obvious exception of the C language). It was developed to run
solely on the Amiga - an A500 at the time - and some of the peculiarities of that machine have been
enshrined in the language ever since.

There were a number of pretenders to Blitz Basic's crown, including AMOS, GFA Basic and HiSoft Basic,
but it built up a large following and went through several versions and revisions - like the Amiga, but
more slowly. Blitz Basic 2 is currently up to version 1.9, the version covered in this guide, although the
information contained herein is relevant in part to all versions of Blitz.

In its relatively short lifetime, Blitz Basic has established itself as the most powerful BASIC dialect on the
Amiga. It is certainly a highly satisfactory package for the budding Amiga programmer - this is
indicated by the abundance of Blitz-created software in the Public Domain.

Blitz Basic is immensely powerful but does not welcome the novice. That is not because the program is
badly implemented - far from it - but because the documentation that accompanies the software is
poor and over-complicated. Together with Blitz Basic, this guide will help you unlock the power of your
Amiga! Here goes...

1.2 Using this guide
The following chapters provide a thorough and comprehensive index of all the Blitz Basic tokens, as well
as a valuable amount of reference material for using Blitz Basic 2.

The commands are arranged in relevant chapters and each description follows an identical format, for
ease of reference. After the command name the operating modes are given and they are followed by a
brief explanation of the command and the command syntax. For example:

2

PRINT

Mode(s): Amiga/Blitz
Statement: print items on screen
Syntax: Print EXPRESSION

This is followed by a fuller explanation and, where appropriate, an example of the command's use.

The following conventions are used in the syntax descriptions:

Command parameters are in capitals
Square brackets indicate optional parameters []
Three dots indicate that more parameters of the same format may be added as necessary (...)

If you are already familiar with the Blitz Basic 2 instruction set, be sure to read through the chapters for
any information that you may not know. You may be pleasantly surprised!

1.3 Basic programming concepts
The Blitz Basic 2 instruction set consists of a number of reserved keywords which perform a specific
task. It includes the names of all Blitz Basic statements, functions, commands and operators. Examples
include PRINT, EDIT$, WAITEVENT and <>.

Reserved words can be entered in either uppercase or lowercase, and Blitz Basic will automatically
highlight and format the keyword. You should always separate Blitz reserved keywords from
parameters, data, or other elements of a command with spaces. This lowers the risk of Blitz Basic not
recognising a token name.

1.3.1 Functions, statements & commands
The Blitz Basic 2 instruction set comes in three different flavours: functions, statements and commands.

Functions are Blitz Basic tokens that require parameters in parentheses, and return a value:

; *** Functions example
; *** Filename - Functions.bb2

N=Abs(-10)
MouseWait
End

Statements are Blitz Basic tokens that only perform an action but do not return a value. Their arguments
do not require parentheses:

; *** Statements example
; *** Filename - Statements.bb2

NPrint "Blitz Basic 2"

1.The Basics

3

MouseWait
End

Commands are Blitz Basic tokens that can be used as either a function or a statement:

; *** Commands example
; *** Filename - Commands.bb2

ev.l=WaitEvent ; *** As a function
Waitevent ; *** As a statement
MouseWait
End

1.4 Amiga Vs Blitz
Blitz Basic runs under two modes, namely Amiga mode and Blitz mode, and some of its commands are
limited in the mode under which they can run. Although the Amiga's Operating System is very powerful,
it often gets in the way of games programmers and slows the machine down. Blitz mode chucks the
Operating System out of the window, so that Blitz Basic can talk directly to the Amiga's hardware. Blitz
mode programs run extremely fast, and smooth scrolling and dual playfield displays can be created.

However, all Blitz reserved keywords are restricted in that they can operate under Amiga mode, OR Blitz
mode, OR both (the operating modes for all reserved keywords are given in this guide).

The following commands (commonly known as directives) are used to temporarily alter the Blitz Basic
operating mode.

AMIGA

Mode(s): Amiga/Blitz
Directive: enter Amiga mode
Syntax: AMIGA

The AMIGA directive is used to enter Amiga mode and to return to the Intuition environment. This is
the default Blitz Basic operating mode:

; *** AMIGA example
; *** Filename - AMIGA.bb2

; *** Enter Blitz mode
BLITZ
; *** Create Blitz mode display
BitMap 0,320,256,3
BitMapOutput 0
Slice 0,44,3
Show 0
; *** Output some text

1.The Basics

4

NPrint "Blitz mode"
VWait 100
; *** Enter Amiga mode
AMIGA
; *** Output some more text
DefaultOutput
NPrint "Amiga mode"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

BLITZ

Mode(s): Amiga/Blitz
Directive: enter Blitz mode
Syntax: BLITZ

The BLITZ directive is used to enter Blitz mode. Any further commands which require the presence of
the Operating System (such as the File access, Window and Gadget commands) will become
temporarily unavailable. File access especially should not occur directly before you enter Blitz mode. To
ensure that this is the case, after file access insert the following line before executing the BLITZ
directive:

VWait 100

Blitz mode is not a permanent state. Once your program has finished executing, Blitz Basic returns to
Amiga mode. For example:

; *** BLITZ example
; *** Filename - BLITZ.bb2

; *** Enter Blitz mode
BLITZ
; *** Create Blitz mode display
BitMap 0,320,256,3
Slice 0,44,3
Show 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.The Basics

5

QAMIGA

Mode(s): Amiga/Blitz
Directive: enter Quick Amiga mode
Syntax: QAMIGA

The QAMIGA directive is used to enter Quick Amiga mode. Quick Amiga mode is similar to Amiga
mode, however the current display is unaffected (i.e. you are not returned to the Intuition environment).
This allows you to jump into Amiga mode without having to corrupt a Blitz mode display. Here's an
example:

; *** QAMIGA example
; *** Filename - QAMIGA.bb2

; *** Enter Blitz mode
BLITZ
; *** Create Blitz mode display
BitMap 0,320,256,3
BitMapOutput 0
Slice 0,44,3
Show 0
; *** Output some text
NPrint "Blitz mode"
VWait 100
; *** Enter Quick Amiga mode
QAMIGA
; *** Output some more text
NPrint "QAmiga mode (same display)"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.5 Label Definitions
Alphanumeric labels can consist of letters, special characters, or numbers. However, they must begin
with an alphabetical character. This allows the use of mnemonic labels to make your program code
easier to understand.

For example, the following labels are valid:

Bob:
BOB:
A100:
_Print:

1.The Basics

6

However, the following label names are not allowed:

1: ; *** begins with a number, not a letter
101: ; *** begins with a number, not a letter
Print: ; *** Blitz Basic reserved keyword

Capital label names are treated differently to lowercase label names. For example, Bob: and BOB: are
recognised as two different labels by Blitz Basic.

1.5.1 Restrictions
Alphanumeric labels are distinguished from variables by a terminating colon (:) - a legal label cannot
have a space between the name and the colon. When you refer to a label in a GOSUB or GOTO or other
control structure, do not include the colon as part of the label name.

You cannot use any Blitz Basic reserved keyword as an alphanumeric label, as Blitz Basic will generate an
error.

1.6 Variables
Variables represent values that are used in a program. In Blitz Basic there are two types of variable:
numeric and string. A numeric variable can only be assigned a value that is a number:

; *** Variables example 1 ** Filename - Variable1.bb2

; *** Define numeric variable
A=1
; *** Output contents of variable
NPrint A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

A string variable can only be assigned a character string value:

; *** Variables example 2 ** Filename - Variable2.bb2

; *** Define string variable
A$="Blitz Basic"
; *** Output contents of variable
NPrint A$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.The Basics

7

You can assign a value to a variable, or it can be assigned as the result of calculations in the program -
this is known as an expression. Before a variable is assigned a value, its value is zero (numeric variables)
or null (string variables).

While a variable name cannot be a reserved keyword, a reserved keyword embedded in a variable name
is allowed:

; *** Variables example 3
; *** Filename - Variable3.bb2

; *** Define numeric variable
APrint=10
; *** Output contents of variable
NPrint APrint
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

LET

Mode(s): Amiga/Blitz
Statement: assign a value to a variable
Syntax: Let VARIABLE=EXPRESSION

LET is an optional statement which is used to assign a value to a variable. For example:

; *** Let example
; *** Filename - Let1.bb2

; *** Define numeric variable
Let A=1
; *** Output contents of variable
NPrint A
; *** Define numeric variable
A=1
; *** Output contents of variable
NPrint A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.The Basics

8

Here are some more examples of LET:

; *** Two Let
; *** Filename - Let2.bb2

Let A=180 ; *** Load variable A with 180
Let A=B*10 ; *** Load ten lots of variable B into A
Let B+1 ; *** Increase B by 1
Let B-1 ; *** Decrease B by 1
Let C*10 ; *** Multiply C by 10
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

EXCHANGE

Mode(s): Amiga/Blitz
Statement: swap the contents of two variables
Syntax: Exchange A,B

This useful little statement swaps the contents of two variables of the same type (i.e. A is assigned the
value of B and B, the value of A). For example:

; *** Exchange example
; *** Filename - Exchange.bb2

NUM=10
; *** Dimension an array
Dim RANDOM(NUM)
; *** Generate NUM (default is 10) numbers
For A=1 To NUM
 RANDOM(A)=A
Next A
Repeat
 Repeat
 ; *** Generate some random numbers
 B=Rnd(NUM)+1
 Until B>0
 ; *** Swap variables
 Exchange RANDOM(B),RANDOM(NUM)
 Let C+1
Until C=NUM
; *** Output random numbers
For T=1 To NUM
 NPrint RANDOM(T)
Next T

1.The Basics

9

; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.7 Numeric types
Blitz Basic currently supports six different types of variable: five numeric types with different ranges and
accuracies for numeric data, and one string type ($) for character strings (we'll take a look at the string
type later on).

Table 1.1 : Numeric types

Type Suffix Range Accuracy Bytes Example
==
Byte .b +/- 128 Integer 1 Neil.b=125
Word .w +/- 32768 Integer 2 Dan.w=30000
Long .l +/- 2147483648 Integer 4 Jon.l=$dff000
Quick .q +/- 32768.0000 1/65536 2 Richard.q=500/7
Float .f +/- 9e18 1/10e18 4 Craig.f=4e7

To assign a type to a variable simply add the relevant suffix from the above table to the variable name:

; *** Blitz Basic types
; *** Filename - Types.bb2

; *** Define numeric variables
BYTE.b=126
WORD.w=32767
LONG.l=3200000
QUICK.q=3.1415
FLOAT.f=3e8
; *** Output numeric variables
NPrint BYTE
NPrint WORD
NPrint LONG
NPrint QUICK
NPrint FLOAT
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

If no suffix is used in the first reference of a variable then Blitz Basic will assign that variable with the
default type. The default type is quick, however the DEFTYPE statement can be used to change this.

1.The Basics

10

DEFTYPE

Mode(s): Amiga/Blitz
Statement: declare a list of variables as a particular type
Syntax: DEFTYPE.TYPE [VARIABLE[,VARIABLE2,...]

The DEFTYPE statement has two main uses. It can change the default type and it can also be used to
declare a list of variables as being of a particular type (the default type is not affected). In this case, the
optional VARIABLE parameters must be included. Here is an example:

; *** DEFTYPE example
; *** Filename - DEFTYPE.bb2

A=Pi
; *** A is a quick
NPrint A
; *** Set default type to word
DEFTYPE.w
NPrint Pi
; *** Declare variables A and B as quicks
DEFTYPE.q A,B
A=Pi
B=Sqr(Pi)
NPrint A
NPrint B
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SIZEOF

Mode(s): Amiga/Blitz
Function: return amount of memory a variable takes up
Syntax: s=SizeOf.TYPE[,PATH]

This function returns the amount of memory, in bytes, that a variable type takes up. If the optional PATH
parameter is included then the offset from the start of the type, to the specified entry, is returned. For
example:

; *** SizeOf example
; *** Filename - SizeOf.bb2

; *** NewType definition
NEWTYPE.NAME

1.The Basics

11

 A.l
 B.w
 C.q
End NEWTYPE
; *** Return size of NewType
NPrint SizeOf.NAME
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.7.1 Manipulating quick numbers
As has been explained, the quick type is a fixed point type, with an accuracy of four decimal places.
Quick numbers can be manipulated with the following functions.

QLIMIT

Mode(s): Amiga/Blitz
Function: limit the range of a quick number
Syntax: QLimit(QUICK,LOW,HIGH)

Use the QLIMIT function to limit the range of a quick number. If QUICK is greater than or equal to LOW,
and less or equal to HIGH, then the value of QUICK is returned. If QUICK is less than LOW then LOW is
returned. Conversely, if QUICK is greater than HIGH then HIGH is returned. For example:

; *** QLimit example
; *** Filename - QLimit.bb2

NPrint QLimit(100,0,90) ; *** Returns 90
NPrint QLimit(90,95,100) ; *** Returns 95
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

QWRAP

Mode(s): Amiga/Blitz
Function: wrap the result of a quick expression
Syntax: QWrap(QUICK,LOW,HIGH)

QWRAP wraps the result of the quick expression if QUICK is greater than or equal to HIGH, or less than
LOW. If QUICK is less than LOW then QUICK-LOW+HIGH is returned. If QUICK is greater than or equal
to HIGH then QUICK-HIGH+LOW is returned. Here are some examples:

1.The Basics

12

; *** QWrap example
; *** Filename - QWrap.bb2

NPrint QWrap(-10,0,320) ; *** Returns 310
NPrint QWrap(100,0,90) ; *** Returns 10
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.8 NewTypes
In addition to the six primitive types available, programmers can also create their own custom types, or
NewTypes. A NewType is a collection of fields, similar to a database or C structure, which enables you to
group together relevant fields in one variable type.

NEWTYPE

Mode(s): Amiga/Blitz
Statement: begin a NewType definition
Syntax: NEWTYPE .NAME

END NEWTYPE

Mode(s): Amiga/Blitz
Statement: end a NewType definition
Syntax: End NEWTYPE

NEWTYPE must be followed by a list of fields, separated by colons and/or newlines:

NEWTYPE .NAME
 X.w
 Y.w
 SPEED.w
End NEWTYPE

Once a NewType is defined, variables are assigned the new type by using a suffix of .NAME:

A.NAME

Which would assign the contents of the "NAME" NewType to the "A" variable.

1.The Basics

13

1.8.1 NewType fields
When defining a NewType structure, field names without a suffix will be assigned the type of the
previous field:

NEWTYPE .NAME
 X.l
 Y
 SPEED
End NEWTYPE

In the above example the X field is assigned the long type, so the Y and SPEED fields are assigned the
same type.

Individual fields within a NewType variable are accessed and assigned using the "\" character:

NEWTYPE .NAME
 X.w
 Y.w
 SPEED.w
End NEWTYPE
A.NAME\X=10
NPrint A\X
MouseWait
End

Which would assign the value 10 to the X field.

To assign values to all of the fields at once, separate the values with commas:

NEWTYPE .NAME
 X.w
 Y.w
 SPEED.w
End NEWTYPE
A.NAME\X=10,20,30
NPrint A\X

Which would assign the values 10, 20 and 30 to the X, Y and SPEED fields respectively.

1.8.2 Restrictions
References to string fields do not require the $ or .s suffix to be present. The following example will
generate an error:

1.The Basics

14

NEWTYPE .NAME
 NAME$
 AGE.q
End NEWTYPE
A.NAME\NAME$="Neil Wright"
NPrint A\NAME$
MouseWait
End

This is the correct procedure:

NEWTYPE .NAME
 NAME$
 AGE.q
End NEWTYPE
A.NAME\NAME="Neil Wright"
NPrint A\NAME
MouseWait
End

1.8.3 NewType in action
Once you have gained an understanding of how NewTypes are created, the next step is to see how they
are used within a Blitz Basic program. Here is full example:

; *** NEWTYPE example
; *** Filename - NEWTYPE.bb2

; *** Create NewType with three fields
NEWTYPE.NAME
 A.l
 B.w
 C.q
End NEWTYPE
; *** Assign three values to the three fields
A.NAME\A=10,20,30
; *** Output the contents of the fields
NPrint A\A
NPrint A\B
NPrint A\C
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.The Basics

15

1.9 Constants
A constant is a values which is defined by the programmer, but does not change during program
execution. Constants are faster than variables and do not consume any memory. However, the following
must be obeyed when using constants:

Constants can only hold integer values
Constants can be used in assembler
Constants can be used in conditional compiling evaluation

A constant is defined by adding the hash symbol (#) before a variable name. For example, #X=100
means that the #X variable is a constant, and will always be equal to 100. This allows the Blitz
programmer to replace meaningless numbers with mnemonic constants:

; *** Constants example
; *** Filename - Constants.bb2

; *** Define constants
#WIDTH=320
#HEIGHT=256
#DEPTH=3

; *** Create Blitz mode display using constants
BLITZ
BitMap 0,#WIDTH,#HEIGHT,#DEPTH
Slice 0,44,#DEPTH
Show 0
BitMapOutput 0
; *** Output contants
NPrint "Width = ",#WIDTH
NPrint "Height = ",#HEIGHT
NPrint "Depth = ",#DEPTH
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.10 Strings
A string variable is one which contains text, rather than numbers. Strings are surrounded by quotation
marks and all string names must end with the dollar ($) character. They can comprise of characters,
numbers or spaces. The example below creates a new string (A$) and stuffs it with the contents of the
subsequent quote marks:

; *** Strings example
; *** Filename - Strings1.bb2

; *** Define a numeric variable
A$="Blitz BASIC 2"

1.The Basics

16

; *** Output variable
Print A$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

MAXLEN

Mode(s): Amiga/Blitz
Statement: define maximum length of string variable
Syntax: MaxLen "STRING"=EXPRESSION

The MAXLEN statement is used to define the maximum length of a string variable. EXPRESSION
specifies the maximum number of characters for the string. This is only necessary when using the Blitz
Basic commands which require this definition (FILEREQUEST$ and FIELDS). Try the following example:

; *** MaxLen example
; *** Filename - MaxLen.bb2

; *** Open a hi-res screen
Screen 0,3+8
; *** Set maximum length of variables
MaxLen PATH$=160
MaxLen FILENAME$=64
; *** Create a file requester
F$=FileRequest$("File requester",PATH$,FILENAME$)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

Blitz Basic's string functions are extremely powerful, which is why we have devoted the whole of
Chapter 2 to them.

1.11 Blitz Basic operators
Operators perform mathematical or logical operations on values. When several operators are used
within the same program statement, they are processed in a specific order. This order is dependent on
the operator list, or hierarchy. The operators found at the top of this list are processed first. If the
operators are of the same level, the leftmost one is executed first, the rightmost last:

1.The Basics

17

Table 1.2 : Blitz Basic operators

Operator Description Example
==
NOT Logical NOT NOT A
BITSET A with B bit set A BitSet B
BITCLR A with B bit cleared A BitClr B
BITCHG A with B bit changed A BitChg B
BITTST True if A bit of B set A BitTst B
^ Exponentiation A^B
LSL A left B times (logical) A LSL B
ASL A left B times (arithmetical) A ASL B
LSR A right B times (logical) A LSR B
ASR A right B times (arithmetical) A ASR B
& Logical AND A&B
| Logical OR A|B
* Multiply A*B
/ Divide A/B
+ Add A+B
- Subtract A-B
= Equal A=1
<> Unequal A<>B
< Less than A Greater than A>B
<= Less than or equal to A<=B
>= Greater than or equal to A>=B
AND Logical AND A AND B
OR Logical OR A OR B

1.11.1 Relational operators
Relational operators are used to compare two values. The result of the comparison is either true (-1) or
false (0). This result can then be used to make a decision regarding program execution. The following
table lists the relational operators:

Table 1.3 : Relational operators

Operator Description Example
==
= Equal A=1
<> Unequal A<>B
< Less than A Greater than A>B
<= Less than or equal to A<=B
>= Greater than or equal to A>=B

The "=" operator compares two numerical or character string expressions. When both are equal the
logical true is returned, otherwise logical false will be returned:

1.The Basics

18

; *** = operator
; *** Filename - =.bb2

A=3
B=3
If A=B Then End
Repeat
Forever

The "<", ">", "<=" and ">=" operators serve to compare numerical and string expressions:

* A>B is true when A is greater than B
* A<B is true when A is less than B
* A<=B is true then A is less than or equal to B
* A>=B is true when A is greater than or equal to B

The "<>" operator determines if two numerical or string expressions are unequal:

* A<>B is true when A is unequal to B

When arithmetic and relational operators are combined in one expression, the arithmetic operation is
always performed first.

1.11.2 Logical operators
Logical operators perform bit manipulation, Boolean operations, or tests on multiple relations. Like
relational operators, logical operators can be used to make decisions regarding program execution.

A logical operator returns the result from the combination of true-false operands. The result (in bits) is
either true (-1) or false (0).

The Blitz Basic logical operators are NOT (logical complement), AND (conjunction) and OR (disjunction).

For example:

; *** Logical operators
; *** Filename - Logic.bb2

NPrint NOT 3 ; *** returns -4
NPrint NOT -4 ; *** returns 3
NPrint 50 AND 40 ; *** returns 32
NPrint 12 AND 11 ; *** returns 8
NPrint 2 OR 1 ; *** returns 3
; *** Wait for a mouse click
MouseWait

1.The Basics

19

; *** Return to Blitz Basic 2 editor
End

1.12 Using operators with strings
A string expression consists of string constants, string variables, and other string expressions combined
by operators. There are two types of string operation: concatenation and relation.

1.12.1 Concatenation
Combining two strings together is called concatenation. The plus (+) operator is used to perform
concatenation. Here is an example of the use of the operator:

; *** A piece of string
; *** Filename - Strings2.bb2

; *** Define string variables
A$="Blitz "
B$="Basic "
C$="is tops!"
; *** Concatenate strings
Print A$+B$+C$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

In the above example the "+" operator is used join together two strings. Running the example produces
the following on the screen:

Blitz Basic is tops!

Note that the other arithmetic operators (i.e. -, /, *) should not be applied to strings.

1.12.2 Relational operators
Strings can also be compared using the same relational operators that are used with numeric variables
(i.e. =, <, >, <>, <= and >=).

With strings, the relational operators compare the ASCII codes of the characters which comprise the
string. The ASCII code system assigns a different number to each keyboard character. If all the ASCII
codes are the same, the strings are equal. If the ASCII codes differ, the lower code number precedes the
higher.

All string constants used in comparison expressions must be enclosed in quotation marks.

1.The Basics

20

Here is an example:

; *** Relational operators
; *** Filename - Relation.bb2

; *** Define string variables
A$="A"
B$="B"
C$="Blitz"
D$="Basic"
; *** Evaluate variables
If A$<B$ Then NPrint A$,"<",B$
If B$>A$ Then NPrint B$,">",A$
If C$>D$ Then NPrint C$,">",D$
If C$=C$ Then NPrint C$,"=",C$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.13 Arrays
An array is a list of variables of the same name that are distinguished by subscripts (values that identify
each variable or element in the array). Arrays can be made up from any type of variable. Creation of
such an array is accomplished by the DIM statement.

DIM

Mode(s): Amiga/Blitz
Statement: dimension an array
Syntax: Dim ARRAY_NAME(DIMENSION LIST)
Syntax 2: Dim List ARRAY_NAME(DIMENSION LIST)

The DIM statement is used to dimension (set up) an array of a given number of numeric or string
variables. In numeric arrays, DIM is followed by a single letter or word that names the array, and one or
more numeric values (dimensions) separated by commas. String arrays are created in the same way,
however a single letter or word followed by a ($) is used for the array name. Here is an example:

; *** Dim example
; *** Filename - Dim.bb2

; *** Dimension array
Dim A(20)
; *** Define array contents
For B=1 To 20
 A(B)=Int(Rnd(100))
Next B

1.The Basics

21

; *** Print array contents
For C=1 To 20
 NPrint A(C)
Next C
; *** Wait for mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.13.1 List arrays
The optional List parameter, if included, denotes a List array. List arrays differ from normal arrays in that
Blitz Basic keeps an internal count of how many elements are stored in the List and an internal pointer
to the current element within the List. List arrays are restricted in size to one dimension:

; *** Dim example 2
; *** Filename - Dim2.bb2

; *** Dimension List array
Dim List A(20)
; *** Define array contents
For B=1 To 20
 A(B)=Int(Rnd(100))
Next B
; *** Output List array contents
For C=1 To 20
 NPrint A(C)
Next C
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

RESETLIST

Mode(s): Amiga/Blitz
Statement: reset List array to first item
Syntax: ResetList ARRAY()

RESETLIST is used to set the current List array element to the first item. This prepares the array for
processing with the NEXTITEM statement. For example:

; *** ResetList example
; *** Filename - ResetList.bb2

; *** Dimension List array

1.The Basics

22

Dim List A(10)
; *** Process List array
While AddFirst(A())
 A()=B
 Let B+1
Wend
ResetList A()
; *** Output List array contents
While NextItem(A())
 NPrint A()
Wend
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

CLEARLIST

Mode(s): Amiga/Blitz
Statement: clear a List array
Syntax: ClearList ARRAY()

The CLEARLIST statement clears a List array. List arrays are automatically cleared when they are
dimensioned. Here is an example:

; *** ClearList example
; *** Filename - ClearList.bb2

; *** Dimension List array
Dim List A(10)
; *** Process List array
While AddFirst(A())
 A()=B
 Let B+1
Wend
ClearList A()
ResetList A()
; *** Output List array contents
While NextItem(A())
 NPrint A()
Wend
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.The Basics

23

ADDFIRST

Mode(s): Amiga/Blitz
Function: insert array item at the beginning of an array List
Syntax: a=AddFirst [ARRAY()]

This function enables you to insert an array item at the beginning of a List array. ADDFIRST returns (-1)
if there is enough room in the array to add an element, and (0) if no array element is available. Example:

; *** AddFirst example
; *** Filename - AddFirst.bb2

; *** Dimension List array
Dim List A(100)
; *** Process List array
While AddFirst(A())
 A()=B
 Let B+1
Wend
NPrint B," items added"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

ADDLAST

Mode(s): Amiga/Blitz
Function: insert array item at the end of an array List
Syntax: a=AddLast [ARRAY()]

The ADDLAST function enables you to insert an array item at the end of a List array. It returns (-1) if
there is enough room in the array to add an element, and (0) if no array element is available. For
example:

; *** AddLast example
; *** Filename - AddLast.bb2

; *** Dimension List array
Dim List A(100)
; *** Process List array
While AddLast(A())
 A()=B
 Let B+1
Wend

1.The Basics

24

; *** Output List array contents
For C=1 To 100
 NPrint A(C)
Next C
NPrint B," items added"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

ADDITEM

Mode(s): Amiga/Blitz
Function: insert array item after current item in array List
Syntax: a=AddItem [ARRAY()]

ADDITEM enables you to insert an array item after a List array's current item. The function returns (-1)
and sets the array's "current item" pointer to the item added if there is enough room to add an
element, and (0) if no array element is available. For example:

; *** AddItem example
; *** Filename - AddItem.bb2

; *** Dimension List array
Dim List A(2)
; *** Process List array
If AddFirst(A()) Then A()=1
If AddItem(A()) Then A()=2
If AddItem(A()) Then A()=3
NPrint "List array is:-"
ResetList A()
; *** Output List array contents
While NextItem(A())
 NPrint A()
Wend
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

KILLITEM

Mode(s): Amiga/Blitz
Statement: remove current item from array List
Syntax: k=KillItem ARRAY()

1.The Basics

25

The KILLITEM statement is used to delete the current item from a List array. The "current item" pointer
is then set to the item before the deleted element. Here is an example:

; *** KillItem example
; *** Filename -KillItem.bb2

; *** Dimension List array
Dim List A(30)
; *** Process List array
While AddItem(A())
 A()=B
 Let B+1
Wend
ResetList A()
While NextItem(A())
 If A()/2<>Int(A()/2)
 KillItem A()
 EndIf
Wend
ResetList A()
; *** Output List array contents
While NextItem(A())
 NPrint A()
Wend
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

PREVITEM

Mode(s): Amiga/Blitz
Function: set pointer to previous item
Syntax: p=PrevItem [ARRAY()]

This function sets the List array's "current item" pointer to the previous item, allowing for backward
processing of a List array. PREVITEM returns (-1) if a previous item is available, and (0) if one is
unavailable. Try the following example:

; *** PrevItem example
; *** Filename - PrevItem.bb2

; *** Dimension List array
Dim List A(25)
; *** Process List array
While AddLast(A())
 A()=B

1.The Basics

26

 Let B+1
Wend
If LastItem(A())
 ; *** Output List array contents
 Repeat
 NPrint A()
 Until NOT PrevItem(A())
EndIf
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

NEXTITEM

Mode(s): Amiga/Blitz
Function: set pointer to next item
Syntax: n=NextItem [ARRAY()]

The NEXTITEM function sets the List array's "current item" pointer to the next item, allowing for forward
processing of a List array. It returns (-1) if the next item is available, and (0) if one is unavailable.
Example:

; *** NextItem example
; *** Filename - NextItem.bb2

; *** Dimension List array
Dim List A(25)
; *** Process List array
While AddLast(A())
 A()=B
 Let B+1
Wend
ResetList A()
; *** Output List array contents
While NextItem(A())
 NPrint A()
Wend
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.The Basics

27

FIRSTITEM

Mode(s): Amiga/Blitz
Function: set pointer to first item
Syntax: f=FirstItem [ARRAY()]

FIRSTITEM sets the "current item" pointer in a List array to the first item in the array. The function
returns (-1) if there is a first item available, and (0) if there are no items in the List array. For example:

; *** FirstItem example
; *** Filename - FirstItem.bb2

; *** Dimension List array
Dim List A(25)
; *** Process List array
While AddFirst(A())
 A()=B
 Let B+1
Wend
If FirstItem(A())
 NPrint "First item = ",A()
EndIf
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

LASTITEM

Mode(s): Amiga/Blitz
Function: set pointer to last item
Syntax: l=LastItem [ARRAY()]

LASTITEM sets the "current item" pointer in a List array to the last item in the array. The function returns
(-1) if there is a last item available, and (0) if there are no items in the List array. For example:

; *** LastItem example
; *** Filename - LastItem.bb2

; *** Dimension List array
Dim List A(25)
; *** Process List array
While AddFirst(A())
 A()=B
 Let B+1

1.The Basics

28

Wend
If LastItem(A())
 NPrint "Last item = ",A()
EndIf
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

PUSHITEM

Mode(s): Amiga/Blitz
Statement: push pointer to internal stack
Syntax: PushItem ARRAY()

The PUSHITEM statement "pushes" a List array's "current item" pointer onto an internal stack. This
pointer can be recalled at a later date by POPITEM. The internal item pointer stack can be pushed 8
times.

POPITEM

Mode(s): Amiga/Blitz
Statement: get pointer from internal stack
Syntax: PopItem ARRAY()

POPITEM retrieves a pushed "current item" pointer from the internal stack. The ARRAY() parameter must
be the name of the most recently pushed List array. Here's an example:

; *** PushItem/PopItem example
; *** Filename - PopItem.bb2

; *** Dimension List array
Dim List A(10)
; *** Process List array
While AddLast(A())
 A()=B
 Let B+1
Wend
ResetList A()
While NextItem(A())
 If A()=5 Then PushItem A()
Wend
PopItem A()
KillItem A()
ResetList A()
; *** Output List array contents
While NextItem(A())

1.The Basics

29

 NPrint A()
Wend
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

ITEMSTACKSIZE

Mode(s): Amiga/Blitz
Statement: set push stack size
Syntax: ItemStackSize MAXIMUM

This statement defines the maximum number of List array items that may be pushed.

1.13.2 Sorting arrays
If you were creating a database-type application, or a program that required the contents of an array to
be in order, then it would be very time consuming to manually sort through the array. Blitz Basic
provides four statements which can be used to automatically order an array.

SORT

Mode(s): Amiga/Blitz
Statement: sort a specified array in ascending order (default)
Syntax: Sort ARRAY()

The SORT statement sorts the specified array in ascending order. The direction of the sort may be
changed using the SORTUP and SORTDOWN statements (default is ascending). Note that NewType
arrays and List arrays cannot be sorted with this statement. Here is a full example:

; *** Sort example
; *** Filename - Sort.bb2

; *** Dimension an array
Dim A(10)
; *** Create an array of random numbers
For B=1 To 10
 A(B)=Int(Rnd(100))
 NPrint A(B)
Next B
NPrint ""
; *** Sort the array in ascending order
Sort A()
; *** Output array
For C=1 To 10
 NPrint A(C)

1.The Basics

30

Next C
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SORTUP

Mode(s): Amiga/Blitz
Statement: force the SORT command to sort into ascending order
Syntax: SortUp

Example:

; *** SortUp example
; *** Filename - SortUp.bb2

; *** Dimension an array
Dim A(10)
; *** Create an array of random numbers
For B=1 To 10
 A(B)=Int(Rnd(100))
Next B
; *** Sort array in ascending order
SortUp
Sort A()
; *** Output new array
For C=1 To 10
 NPrint A(C)
Next C
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.The Basics

31

SORTDOWN

Mode(s): Amiga/Blitz
Statement: force the SORT command to sort into descending order
Syntax: SortDown

Example:

; *** SortDown example
; *** Filename - SortDown.bb2

; *** Dimension an array
Dim A(10)
; *** Create an array of random numbers
For B=1 To 10
 A(B)=Int(Rnd(100))
Next B
; *** Sort array in descending order
SortDown
Sort A()
; *** Output new array
For C=1 To 10
 NPrint A(C)
Next C
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SORTLIST

Mode(s): Amiga/Blitz
Statement: rearrange the elements in a linked list
Syntax: SortList ARRAY()

The SORTLIST statement is used to rearrange the order of elements in a Blitz Basic linked list. The order
in which the items are sorted depends on the first field of the linked list type, which must be a single
integer word:

; *** SortList example
; *** Filename - SortList.bb2

; *** Dimension a List array
Dim List A(10)
; *** Create a List array of random numbers

1.The Basics

32

While AddLast(A())
 A()=Int(Rnd(100))
 Let B+1
Wend
ResetList A()
; *** Sort List array
SortList A(),0
; *** Output new array
While NextItem(A())
 NPrint A()
Wend
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

1.14 Program control
The following statements are used to control Blitz Basic program execution.

END

Mode(s): Amiga/Blitz
Statement: end the current program
Syntax: End

This statement serves to end the current program. Program execution may not be continued. For
example:

; *** End example
; *** Filename - End.bb2

NPrint "Press left mouse button to return to editor"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

STOP

Mode(s): Amiga/Blitz
Statement: interrupt the current program
Syntax: Stop

1.The Basics

33

The STOP statement interrupts the current program. Program execution may be resumed using the
CONT statement:

; *** Stop example
; *** Filename - Stop.bb2

A=Int(Rnd(5))
NPrint "Press left mouse button to stop"
; *** Wait for a mouse click
MouseWait
; *** Stop program in its tracks
Stop

CONT

Mode(s): Amiga/Blitz
Statement: continue current program
Syntax: Cont [N]

This statement is only available in direct mode. CONT resumes program execution from the instruction
following the STOP statement. The optional N parameter can be used to ignore a specified number of
STOP statements after a CONT.

1.15 Using data
What is Data? Well, 99% of all programs ever written operate on and use data of one kind or another.
Information and data are really one and the same; we enter information into a computer and get out a
different type of information at the end of processing. So when the information is inside the computer,
we refer to it as data. Large amounts of this data can be stored in your Blitz programs with the DATA
statement.

DATA

Mode(s): Amiga/Blitz
Statement: define data items in a program
Syntax: Data LIST
Syntax 2: Data .TYPE LIST

READ

Mode(s): Amiga/Blitz
Statement: read data into a variable
Syntax: Read LIST

1.The Basics

34

RESTORE

Mode(s): Amiga/Blitz
Statement: set the current READ pointer
Syntax: Restore PROGRAM_LABEL

The DATA statement allows you to store constant values in your programs. A data pointer is associated
with the commands DATA and READ. This pointer always points to the next DATA item to be read with
the READ statement and is set initially to the first DATA item. The data pointer can be set at a specific
DATA line with the RESTORE statement. For this purpose, a label must be set in front of the DATA line
and the data pointer set with RESTORE PROGRAM_LABEL. If no label follows the RESTORE statement the
data pointer will be set to the very first DATA item in the program. Here is an example:

; *** Using Data ** Filename - Data.bb2

; *** Dimension a string array
Dim A$(5)
; *** Return location of program data
Restore MY_DATA
; *** Read data elements into string array
For A=1 To 5
 Read A$(A)
 NPrint A$(A)
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Program data
MY_DATA:
Data$ "Blitz","Basic","Is","Truly","Remarkable"

When data is being read into a variable, the .TYPE of the data being read
must match the type of the variable it is being read into:

Table 1.4 : Data types

Data Data Type Example
==
Byte Data.b Data.b=125
Word Data.w Data.w=30000
Long Data.l Data.l=$dff000
Quick Data.q Data.q=500/7
Floating point Data.f Data.f 3.14,1.79
String Data$ Data$ "Blitz","BASIC"

1.The Basics

35

For example:

; *** Using Data 2 ** Filename - Data2.bb2
; *** Read program data into variables
Read A$,B,C.w
; *** Output variable contents
NPrint A$
NPrint B
NPrint C
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Program data
Data$ "Blitz" ; *** String type data
Data 39 ; *** Quick type data
Data -10 ; *** Word type data

1.16 End-of-Chapter summary
There are three different types of Blitz Basic token: functions, statements and commands.

Functions are Blitz Basic tokens that require parameters in parentheses, and return a value.

Statements are Blitz Basic tokens that only perform an action but do not return a value. Their arguments
do not require parentheses.

Commands are Blitz Basic tokens that can be used as either a function or a statement, depending upon
whether the arguments were in parentheses or not.

Blitz Basic 2 runs under two modes: Amiga and Blitz. For system-friendly programs use Amiga mode
and, for extra speed, throw the operating system out of the window with Blitz mode.

Variables represent values that are used in a program. Blitz Basic supports six different types of variable:
five numeric types with different ranges and accuracies for numeric data, and one string type ($) for
character strings. Custom types can be created with the NEWTYPE statement.

Constants are values which are defined by the programmer, but do not change during program
execution.

A string variable is one which contains text, rather than numbers. Strings are surrounded by quotation
marks and all string names must end with the dollar ($) character.

Operators perform mathematical or logical operations on values.

An array is a list of variables of the same name that are distinguished by subscripts (values that identify
each variable or element in the array). List arrays are limited in size to one dimension.

Program execution is stopped with the END statement.

Large amounts of data can be stored in your programs with the DATA statement.

1.The Basics

36

Chapter 2 : String Functions
As we have already found out, a string variable is one which contains text, rather than numbers. Strings
are surrounded by quotation marks and all string names must end with the dollar ($) character. They
can comprise of characters, numbers or even spaces.

In this chapter you will learn how to manipulate strings using the powerful Blitz Basic string functions.

2.1 Strings and roundabouts
Strings can be sliced, diced and chopped up into individual words and letters using LEFT$, RIGHT$ and
MID$. These are the most powerful string functions in Blitz Basic.

LEFT$

Mode(s): Amiga/Blitz
Function: return the leftmost characters of a string
Syntax: destination$=Left$(SOURCE$,NUMBER_OF_CHARACTERS)

LEFT$ takes the specified number of characters from a source string, beginning with the first character,
and pastes them into a destination string. For example:

; *** Left$ example
; *** Filename - Left$.bb2

NPrint "Enter a string:"
; *** Input text string (40 characters maximum)
A$=Edit$(40)
; *** Input number of characters
NPrint "How many characters from left?:"
A=Edit(10)
; *** Grab the specified characters
NPrint Left$(A$,A)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

RIGHT$

Mode(s): Amiga/Blitz
Function: return the rightmost characters of a string
Syntax: destination$=Right$(SOURCE$,NUMBER_OF_CHARACTERS)

37

The equivalent function for the right-hand side of text strings is the aptly named RIGHT$. RIGHT$ takes
the specified number of rightmost characters from a source string and pastes them into a destination
string. The following example can be used to generate numbers with preceding zero characters, such as
those found in shoot-em-up games and high-score tables:

; *** Right$ example
; *** Filename - Right$.bb2

SCORE=1000
; *** Turn variable into a string
S$=Str$(SCORE)
; *** Add zeros
S$=Right$("0000000"+S$,7)
NPrint S$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

MID$

Mode(s): Amiga/Blitz
Function: return number of characters from middle of string
Syntax: destination$=Mid$(SOURCE$,START[,NUMBER_OF_CHARACTERS])

The MID$ function also works along the same lines. It returns the specified number of characters from
the middle of a string, starting with character number START. If the optional NUMBER_OF_CHARACTERS
parameter is omitted then all characters from START to the end of the string are returned. Here are
some examples which demonstrate the correct use of MID$.

Our first example splits up the source string (A$) into its component letters and displays them vertically:

; *** Vertical text
; *** Filename - Vertical_Text.bb2

A$="Blitz Basic"
; *** Use Workbench screen for output
WbToScreen 0
; *** Send Workbench to front of display
WBenchToFront_
; *** Attach window to Workbench screen
Window 0,10,50,600,160,$1|$2|$3|$8,"Vertical Text",0,1
For N=1 To Len(A$)
 ; *** Split string up into characters
 NPrint Mid$(A$,N,1)
Next
; *** Wait for a mouse click

2.String Functions

38

MouseWait
; *** Send Workbench to back of display
WBenchToBack_
; *** Return to Blitz Basic 2 editor
End

The second example also splits up a string into letters, but this time the string is displayed horizontally,
one character at a time. This results in a "typewriter" effect, although some typists may disagree!:

; *** Typewriter
; *** Filename - Typewriter.bb2

; *** Character delay
DELAY=4
; *** Text string to output
TXT$="Blitz Basic is the most versatile BASIC on planet Earth!"
; *** Use Workbench screen for output
WbToScreen 0
; *** Send Workbench to front of display
WBenchToFront_
Window 0,10,50,600,160,$1|$2|$3|$8,"Typewriter",0,1
; *** Character pointer
A=1
For B=0 To Len(TXT$)
 ; *** Split string up into characters
 Print Mid$(TXT$,A,1)
 Let A+1
 ; *** Pause typewriter
 VWait DELAY
Next B
; *** Send Workbench to back of display
WBenchToBack_
; *** Return to Blitz Basic 2 editor
End

2.2 Manipulating strings
Just as numbers can be added, subtracted, multiplied and divided, strings can be manipulated with the
following functions.

UNLEFT$

Mode(s): Amiga/Blitz
Function: remove a number of rightmost characters from string
Syntax: new$=UnLeft$(SOURCE$,LENGTH)

2.String Functions

39

UNLEFT$ removes the specified number of characters from the end of a string and places the remaining
characters into a new string. The LENGTH parameter specifies the number of characters to remove. For
example:

; *** UnLeft$ example
; *** Filename - UnLeft$.bb2

NPrint "Enter a string:"
; *** Input text string to manipulate
A$=Edit$(40)
; *** Input number of characters
NPrint "How many characters from end?:"
A=Edit(10)
; *** Output new text string
NPrint UnLeft$(A$,A)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

UNRIGHT$

Mode(s): Amiga/Blitz
Function: remove a number of leftmost characters from string
Syntax: new$=UnRight$(SOURCE$,LENGTH)

Newton's third law of motion states thus: "Every action has an equal and opposite reaction.". In Blitz
Basic it often seems like every function has an equal and opposite function! UNRIGHT$, as you may
have guessed, removes a specified number of characters from the beginning of a string. The LENGTH
parameter specifies the number of characters to remove. Here's an example:

; *** UnRight$ example
; *** Filename - UnRight$.bb2

; *** Returns "Blitz is best!"
Print UnRight$("AMOSBlitz is best!",4)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

2.String Functions

40

LSET$*

Mode(s): Amiga/Blitz
Function: return a string of text of a given length
Syntax: new$=LSet$(SOURCE$,LENGTH)

The LSET$ function returns a string of text of LENGTH characters long. If SOURCE$ is shorter than
LENGTH then the right-hand side of the string will be padded with spaces. The string will be truncated if
it is longer than LENGTH. Here are some examples:

; *** LSet$ example
; *** Filename - LSet$.bb2

; *** Returns "Blitz"
NPrint LSet$("Blitz Basic",5)
; *** Returns "S"
NPrint LSet$("Spaced out!",1)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

RSET$

Mode(s): Amiga/Blitz
Function: return a string of text of a given length
Syntax: new$=RSet$(SOURCE$,LENGTH)

The RSET$ function returns a string of text of LENGTH characters long. If SOURCE$ is shorter than
LENGTH then the left-hand side of the string will be padded with spaces. The left-hand side of the
string will be truncated if it is longer than LENGTH. Try the following examples:

; *** RSet$ example
; *** Filename - RSet$.bb2

; *** Returns "Wright"
NPrint RSet$("Neil Wright",6)
; *** Centres "Richard Irving"
NPrint RSet$("Richard Irving",45)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

2.String Functions

41

STRIPLEAD$

Function: remove all leading occurrences of a character
Syntax: new$=StripLead$(SOURCE$,EXPRESSION)

The STRIPLEAD$ function removes all leading occurrences of an ASCII character from a source string.
EXPRESSION is the decimal ASCII code value to be removed. For example:

; *** StripLead$ example
; *** Filename - StripLead$.bb2

; *** Remove leading B character
; *** (Returns "litz Basic")
Print StripLead$("Blitz Basic",66)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

To remove all trailing occurrences of an ASCII character the equivalent STRIPTRAIL$ function may be
used.

TRIPTRAIL$

Mode(s): Amiga/Blitz
Function: remove all trailing occurrences of a character
Syntax: new$=StripTrail$(SOURCE$,EXPRESSION)

Here is an example:

; *** StripTrail$ example
; *** Filename - StripTrail$.bb2

A$="There are "
; *** Remove trailing spaces
Print StripTrail$(A$,32)+" no spaces"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

2.String Functions

42

CENTRE$

Mode(s): Amiga/Blitz
Function: return a centred text string
Syntax: a$=Centre$(SOURCE$,CHARACTERS)

The CENTRE$ function returns a centred text string of length CHARACTERS. If SOURCE$ is shorter than
the specified number of characters then the resulting string will be padded with spaces. If SOURCE$ is
longer then it will be truncated on either side. Try the following examples:

; *** Detention centre$
; *** Filename - Centre$.bb2

; *** Returns "tz Ba"
NPrint Centre$("Blitz Basic",5)
; *** Returns " Blitz "
NPrint Centre$("Blitz",7)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

Just as dinosaurs can be cloned (or so movie-makers would like us to believe!), so can text strings. Blitz
Basic doesn't support DNA directly so you have to make do with the STRING$ function.

STRING$

Mode(s): Amiga/Blitz
Function: create a new string using copies of an old string
Syntax: new$=String$(SOURCE$,NUMBER)

STRING$ will create a new string containing a specified number of copies of a source string. For
example:

; *** String$ example
; *** Filename - String$.bb2

NPrint ""
NPrint "Input any old garbage:-"
NPrint ""
; *** Input a text string
A$=Edit$(10)
NPrint ""
; *** Multiply string by five
B$=String$(A$,5)

2.String Functions

43

Print "* 5 = ",B$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

2.3 String searching
Applications such as word processors and programming utilities often have string searching facilities.
These work by breaking down and analysing text files until matching strings are found (the search), and
replacing text with new strings (the replace). Blitz Basic has two commands for total control over string
searching.

2.3.1 Searching for characters in a string
INSTR

Mode(s): Amiga/Blitz
Function: search for occurrences of one string within another
Syntax: a=Instr(SOURCE$,FIND$[,START])

The INSTR function enables you to search for one string within another. If the search is successful then
the character position of the first matching character will be returned. If the search is unsuccessful then
(0) will be returned.

The optional START parameter allows you to specify the starting character for the search. Values for
START may range from zero to the length of the string. Here is an example:

; *** String searching
; *** Filename - Instr_Example.bb2

Restore DAT
NPrint "Input a letter or word to search"
; *** Input word to search
SEARCH$=Edit$(40)
; *** Convert to upper case
SEARCH$=UCase$(SEARCH$)
For A=1 To 6
 ; *** Read data statements
 Read A$
 B$=UCase$(A$)
 ; *** Does string exist?
 If Instr(B$,SEARCH$)
 Print A$
 ; *** Wait for a mouse click
 MouseWait
 End
 End If

2.String Functions

44

Next A
; *** Unsuccessful search
NPrint "No match found"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Data to search
DAT:
Data$ "Blitz"
Data$ "AMOS"
Data$ "GFA"
Data$ "Hisoft"
Data$ "Amiga"
Data$ "Spectrum"

The CASESENSE statement may be used to determine whether the search is case sensitive.

2.3.2 Replacing characters in a string
REPLACE$

Mode(s): Amiga/Blitz
Function: replace any occurrences of a string with a new string
Syntax: new$=Replace$(SOURCE$,FIND$,NEW$)

REPLACE$ is used to search for one string within another and replace it with a new string. SOURCE$ is
the string to be searched, FIND$ is the string to be found and NEW$ is the replacement string. For
example:

; *** Replace$ example
; *** Filename - Replace$.bb2

; *** Text string to manipulate
A$="AMOS Basic is tops!"
NPrint A$
VWait 50
; *** Replace the word "AMOS" with "Blitz"
A$=Replace$(A$,"AMOS","Blitz")
NPrint A$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

The CASESENSE statement may be used to determine whether the search is case sensitive.

2.String Functions

45

2.3.3 Case sensitivity
Upper and lower case letters are treated as completely different letters by Blitz Basic. For example, the
word "natch" is different to "NATCH". This is known as case sensitivity. The INSTR and REPLACE$
commands are, by default, case sensitive.

CASESENSE

Mode(s): Amiga/Blitz
Statement: control the searching mode used by INSTR and REPLACE$
Syntax: CaseSense On/Off

CASESENSE is used to determine whether or not the INSTR and REPLACE$ functions are case sensitive.

In the example below, the string to search must be entered in the correct case (e.g. DOG, cAT, HAmster),
otherwise a match will not be found:

; *** CaseSense example
; *** Filename - CaseSense.bb2

Dim A$(5)
; *** Read data into memory
Restore DAT
For A=1 To 5
 Read A$(A)
Next A
; *** Case sensitivity on
CaseSense On
NPrint "Input string to search (from data list)"
B$=Edit$(10)
For B=1 To 5
 ; *** Exact match found
 If Instr(A$(B),B$)=1
 NPrint B$," found at location ",B
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 Else
 ; *** No match found
 NPrint B$," not found"
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 EndIf
Next B

; *** Program data
DAT:

2.String Functions

46

Data$ "DOG"
Data$ "cAt"
Data$ "HAmster"
Data$ "rAt"
Data$ "WoMaN"

This is the same example, but this time without case sensitivity (i.e. the strings can be entered in any
case). For example:

; *** CaseSense example 2
; *** Filename - CaseSense2.bb2

Dim A$(5)
; *** Read data into memory
Restore DAT
For A=1 To 5
 Read A$(A)
Next A
; *** Case sensitivity off
CaseSense Off
NPrint "Input string to search (from data list)"
B$=Edit$(10)
For B=1 To 5
 ; *** Match found (case ignored)
 If Instr(A$(B),B$)=1
 NPrint B$," found at location ",B
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 Else
 ; *** No match found
 NPrint B$," not found"
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 EndIf
Next B

; *** Program data
DAT:
Data$ "DOG"
Data$ "cAt"
Data$ "HAmster"
Data$ "rAt"
Data$ "WoMaN"

2.String Functions

47

2.4 Converting strings
One facility that we haven't looked at so far is the conversion between upper and lower case letters.
Upper case letters are often referred to as "capitals".

UCASE$

Mode(s): Amiga/Blitz
Function: convert a string of text to upper case
Syntax: upper$=UCase$(SOURCE$)

The UCASE$ function simply converts a source string into upper case characters. Here are some
examples:

; *** UCase$ example
; *** Filename - UCase$.bb2

; *** Will print "BLITZ BASIC"
Print UCase$("blitz basic")
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

This second example splits up a string of text into individual words and capitalises the first letter of each
word. It is a good demonstration of how MID$ can be used to chop up strings:

; *** UCase$ example2
; *** Filename - UCase$_Example2.bb2

Print "Please input your full name:"
; *** Input string and convert to lower case
A$=Edit$(80)
A$=LCase$(A$)
A=1
B=1
; *** Chop up string into words
While A<=Len(A$)
 If B=1
 ; *** Convert first letter to capitals
 A$=Mid$(A$,1,A-1)+UCase$(Mid$(A$,A,1))+Mid$(A$,A+1)
 B=0
 End If
 ; *** New word found
 If Mid$(A$,A,1)=" "
 B=1
 End If

2.String Functions

48

 Let A+1
Wend
; *** Output new string
NPrint A$
VWait 50
; *** Return to Blitz Basic 2 editor
End

LCASE$

Mode(s): Amiga/Blitz
Function: convert a string of text to lower case
Syntax: lower$=LCase$(SOURCE$)

Working along similar lines, the LCASE$ function converts a source string into lower case characters. For
example:

; *** Lower and lower
; *** Filename - LCase$.bb2

LOWER$="TOTALLY BLITZED"
LOWER$=LCase$(LOWER$)
; *** Will print "totally blitzed"
Print LOWER$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

You may find it useful, at times, to manipulate numbers in the same way as strings. Unfortunately the
Blitz Basic string functions do not support numeric expressions directly. To get around this problem you
have to convert numeric variables into text strings using the STR$ function.

STR$

Mode(s): Amiga/Blitz
Function: convert a number into a text string
Syntax: new$=Str$(EXPRESSION)

STR$ converts a numeric variable into a text string. This function allows you to manipulate numbers
using string functions. Here is an example:

2.String Functions

49

; *** Str$ example
; *** Filename - Str$.bb2

SCORE=100
; *** Convert number to string
S$=Str$(SCORE)
Print S$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

USTR$

Mode(s): Amiga/Blitz
Function: convert a number into a text string
Syntax: new$=UStr$(EXPRESSION)

USTR$ converts a numeric variable into a text string. This function allows you to manipulate numbers
using string functions. Unlike STR$, USTR$ is not affected by any active FORMAT commands (consult
Chapter 5 for more information on formatting numeric strings). For example:

; *** UStr$ example
; *** Filename - UStr$.bb2

A=999
A$=UStr$(A)
; *** Will print "999"
NPrint A$
A$=Left$(A$,1)
; *** Will print "9"
NPrint A$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

The logical opposite of STR$ is the VAL function. VAL converts a numeric string back into a numeric
variable.

2.String Functions

50

VAL

Mode(s): Amiga/Blitz
Function: convert a text string into a number
Syntax: a=Val(SOURCE$)

To convert a numeric string into a numeric variable use the VAL function. This conversion will fail, and
return (0), if a non-numeric value or second decimal point is found. Here are some examples:

; *** Added VALue
; *** Filename - Val.bb2

; *** Will print 180
NPrint Val("180")
; *** Will print 0 (failed conversion)
NPrint Val("ABC")
; *** Will print 0 (failed conversion)
NPrint Val("10.10.10")
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

2.5 Obtaining string information
CHR$

Mode(s): Amiga/Blitz
Function: return a one character string with a given ASCII code
Syntax: s$=Chr$(CODE)

The CHR$ function will return a one-character string equivalent to the specified ASCII code. This little
example outputs the whole ASCII character set to the screen:

; *** Chr$ example
; *** Filename - Chr$.bb2

For A=32 To 253
 Print Chr$(A)
VWait
Next A
; *** Wait for a mouse click
MouseWait

2.String Functions

51

; *** Return to Blitz Basic 2 editor
End

ASC

Mode(s): Amiga/Blitz
Function: return the ASCII code of a given character
Syntax: code=Asc(SOURCE$)

ASC will return the ASCII code of the first character in SOURCE$. Try the following examples:

; *** Some Asc examples
; *** Filename - Asc.bb2

; *** Returns "32"
NPrint Asc(" ")
; *** Returns "65"
NPrint Asc("A")
; *** Returns "66" ("B")
NPrint Asc("BLITZ BASIC")
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

One of the most important things you need to know about a string is its length. This can be determined
as follows.

LEN

Mode(s): Amiga/Blitz
Function: return the length of a string
Syntax: length=Len(SOURCE$)

The LEN function returns the number of characters in SOURCE$. For example:

; *** Len example
; *** Filename - Len.bb2

NPrint ""
; *** Input string to test
NPrint "Input your name:"
A$=Edit$(30)
; *** Count characters in string
Print "Your name is ",Len(A$)," letter(s) long"

2.String Functions

52

VWait 100
; *** Return to Blitz Basic 2 editor
End

2.6 Character strings
The following functions are used to convert complex numbers into simple two and four byte text strings
in order to save space when writing values to sequential files. Integers, long values, and quick values are
currently supported by Blitz Basic (consult Chapter 1 for a full discussion of Blitz Basic types).

2.6.1 Integers
Integers, as we have already established, are whole numbers (e.g. 8, 108, 1008, and 10,008).

MKI$

Mode(s): Amiga/Blitz
Function: return a two byte character string
Syntax: m$=Mki$(INTEGER)

This function creates a two byte character string from the two byte INTEGER parameter. MKI$ is often
used when writing integer values to sequential files to save on disk space.

CVI

Mode(s): Amiga/Blitz
Function: logical opposite of MKI$
Syntax: c=Cvi(STRING$)

CVI is the logical opposite of MKI$. The function is used to convert the two byte character string
generated by MKI$ back to an integer. Try the following example:

; *** Mki$/Cvi example
; *** Filename - Cvi.bb2

If WriteFile (0,"RAM:INTEGER")
 ; *** Open sequential file
 FileOutput 0
 ; *** Convert integer and save to file
 Print Mki$(16705)
 ; *** Close sequential file
 CloseFile 0
 DefaultOutput
 If ReadFile (0,"RAM:INTEGER")
 ; *** Read sequential file
 FileInput 0
 ; *** Convert character string

2.String Functions

53

 NPrint Cvi(Edit$(40))
 ; *** Close sequential file
 CloseFile 0
 DefaultInput
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 EndIf
EndIf

2.6.2 Long values
Long values are integers with much greater range (+/- 2147483648).

MKL$

Mode(s): Amiga/Blitz
Function: return a four byte character string
Syntax: m$=Mkl$(LONG)

The MKL$ function creates a four byte character string from the four byte LONG parameter. MKL$ is
often used when writing long values to sequential files to save on disk space.

CVL

Mode(s): Amiga/Blitz
Function: logical opposite of MKL$
Syntax: c=Cvl(STRING$)

CVL is the logical opposite of MKL$. The function is used to convert the four byte character string
generated by MKL$ back to a long:

; *** Mkl$/Cvl example
; *** Filename - Cvl.bb2

If WriteFile (0,"RAM:LONG")
 ; *** Open sequential file
 FileOutput 0
 ; *** Convert long and save to file
 Print Mkl$($dff000)
 ; *** Close sequential file
 CloseFile 0
 DefaultOutput
 If ReadFile (0,"RAM:LONG")
 ; *** Read sequential file
 FileInput 0

2.String Functions

54

 ; *** Convert character string
 NPrint Hex$(Cvl(Edit$(40)))
 ; *** Close sequential file
 CloseFile 0
 DefaultInput
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 EndIf
EndIf

2.6.3 Quick values
Quick values are fixed-point numeric types, with four decimal point accuracy (e.g. 56.0000, 3.1415 and
45,6789). Quicks are less accurate than floating point numbers but much faster.

MKQ$

Mode(s): Amiga/Blitz
Function: return a four byte character string
Syntax: m$=Mkq$(QUICK)

MKQ$ creates a four byte character string from the four byte QUICK parameter. MKQ$ is often used
when writing quick values to sequential files to save on disk space.

CVQ

Mode(s): Amiga/Blitz
Function: logical opposite of MKQ$
Syntax: c=Cvq(STRING$)

CVQ is the logical opposite of MKQ$. The function is used to convert the four byte character string
generated by MKQ$ back to a quick. For example:

; *** Mkq$/Cvq example
; *** Filename - Cvq.bb2

If WriteFile (0,"RAM:QUICK")
 ; *** Open sequential file
 FileOutput 0
 ; *** Convert quick and save to file
 Print Mkq$(500/7)
 ; *** Close sequential file
 CloseFile 0
 DefaultOutput
 If ReadFile (0,"RAM:QUICK")

2.String Functions

55

 ; *** Read sequential file
 FileInput 0
 ; *** Convert character string
 NPrint Cvq(Edit$(40))
 ; *** Close sequential file
 CloseFile 0
 DefaultInput
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 EndIf
EndIf

2.7 End-of-Chapter summary
Text strings are surrounded by quotation marks and all string names must end with the dollar ($)
character. They can comprise of characters, numbers or even spaces. Strings can be shortened,
lengthened, converted to upper and lower case, counted, cloned, searched and even turned into
numbers!

Table 2.1 : String functions

Command Function
===
ASC Return ASCII code of character
CASESENSE Toggle case sensitivity
CENTRE$ Centre a string
CHR$ Return character given ASCII code
CVI Logical opposite of Mki$
CVL Logical opposite of Mkl$
CVQ Logical opposite of Mkq$
INSTR Search for character in a string
LCASE$ Convert a string into lower case
LEFT$ Return leftmost characters of a string
LEN Return length of a string
LSET$ Return a string of given length
MID$ Return middle characters of a string
MKI$ Create a two byte string from an integer
MKL$ Create a four byte string from a long
MKQ$ Create a four byte string from a quick
REPLACE$ Replace character in a string
RIGHT$ Return rightmost characters of a string
RSET$ Return a string of given length
STRING$ Clone a string
STRIPLEAD$ Remove leading character
STRIPTRAIL$ Remove ending character
STR$ Convert a number into a string
UCASE$ Convert a string into upper case
UNLEFT$ Remove rightmost characters
UNRIGHT$ Remove leftmost characters

2.String Functions

56

USTR$ Convert a number into a string
VAL Convert a string into a number

2.String Functions

57

Chapter 3 : Mathematics
Computers are basically giant number crunchers, so it will come as no great surprise that the Amiga -
and Blitz Basic 2 - are great at performing mathematical functions. This chapter will introduce the Blitz
Basic maths commands, before moving onto more advanced machine code instructions.

3.1 Arithmetical operators
As explained in Chapter 1, the following operators are used to perform arithmetical operations:

Table 3.1 : Arithmetical operators

Operator Description
========================
* Multiplication
/ Division
+ Addition
- Subtraction
^ Exponential

For example:

; *** Arithmetic
; *** Filename - Arithmetic.bb2

NPrint 2*5 ; *** 2 times 5 = 10
NPrint 20/2 ; *** 20 divided by 2 = 10
NPrint 5+5 ; *** 5 plus 5 = 10
NPrint 15-5 ; *** 15 minus 5 = 10
NPrint 10^1 ; *** 10 to the power 1 = 10
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

The following text provides an insight into Blitz Basic's more powerful mathematical commands.

3.2 Sign on the dotted line
SGN

Mode(s): Amiga/Blitz
Function: return the sign of a number
Syntax: sign=Sgn(EXPRESSION)

58

The SGN function returns a value which indicates the sign of a number. If the number is negative then
(-1) is returned. If the number is zero then (0) is returned, and if the number is positive then (1) is
returned.

Table 3.2 : Values returned by SGN

Expression Result
==================
Negative -1
Zero 0
Positive 1

For example:

; *** Return the sign of a number
; *** Filename - Sgn.bb2

Print "Input a number:"
; *** Input number to test
E=Edit(40)
; *** Return sign of number
SIGN=Sgn(E)
; *** Number is negative
If SIGN=-1 Then Print "Negative"
; *** Number is equal to 0
If SIGN=0 Then Print "Zero"
; *** Number is positive
If SIGN=1 Then Print "Positive"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

ABS

Mode(s): Amiga/Blitz
Function: return an absolute value
Syntax: a=Abs(EXPRESSION)

The ABS function returns the absolute value of a number. It is used to convert a numeric expression into
a positive number. This results in the following return values:

3.Mathematics

59

Table 3.3 : Values returned by ABS

Expression Abs(EXPRESSION) is:
===============================
Negative Positive
Zero 0
Positive Positive

For example:

; *** Return the absolute of a number
; *** Filename - Abs.bb2

A=Abs(-100)
; *** Returns "100"
Print A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

QABS

Mode(s): Amiga/Blitz
Function: return the absolute value of a quick value
Syntax: q=QAbs(QUICK)

QABS works similarly to ABS except that is uses quick values. Because of this the function operates
noticeably quicker than ABS. However, you are limited by the restrictions of the quick type of value. For
example:

; *** QAbs example
; *** Filename - QAbs.bb2

; *** Returns "16"
Print QAbs(-16)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

3.Mathematics

60

3.3 Floating point numbers
FLOATMODE

Mode(s): Amiga/Blitz
Statement: change format of floating point numbers
Syntax: FloatMode MODE

FLOATMODE enables you to change how floating point numbers are output by the PRINT and NPRINT
commands. Floating point numbers may be displayed in one of three ways, as follows:

Exponential format (Mode 1)
Standard format (Mode -1)
Guessed format (Mode 0 - Default mode)

Exponential format displays a floating point number as a value multiplied by ten raised to a power.
Standard format displays values as they are (What You See Is What You Get). Guessed format forces
Blitz to take a stab-in-the-dark as to the most appropriate mode to use. Here are some examples:

; *** FloatMode examples
; *** Filename - FloatMode.bb2

A.f=180.57
NPrint A," best guess"
FloatMode 1
NPrint A," exponential"
FloatMode -1
NPrint A," standard"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

INT

Mode(s): Amiga/Blitz
Function: convert floating point number into integer
Syntax: i=Int(EXPRESSION)

The INT function returns the integer part of a floating point number by rounding down it down to the
nearest whole number. For example:

3.Mathematics

61

; *** INTeresting
; *** Filename - Int.bb2

NPrint "Input a number with decimal places"
; *** Input floating point number
A=Edit(40)
; *** Return integer part of number
Print Int(A)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

FRAC

Mode(s): Amiga/Blitz
Function: return the fractional part of an expression
Syntax: f=Frac(EXPRESSION)

The FRAC function returns the fractional part of a number (the figures after the decimal point), thus
removing the whole number value:

; *** Frac example
; *** Filename - Frac.bb2

; *** Returns "1415925"
Print Frac(Pi)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

QFRAC

Mode(s): Amiga/Blitz
Function: return the fractional part of a quick value
Syntax: q=QFrac(QUICK)

QFRAC returns the fractional part of a quick value. It is significantly faster than FRAC, however it can
only use quick values. Here is an example:

3.Mathematics

62

; *** QFrac example
; *** Filename - QFrac.bb2

; *** Returns ".4"
Print QFrac(3.4)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

3.4 Standard mathematical functions
SQR

Mode(s): Amiga/Blitz
Function: calculate square root
Syntax: square=Sqr(EXPRESSION)

This function calculates the square root of a numeric expression. The expression must be a positive
number. When the expression is smaller than zero an error is returned. For example:

; *** Square eyed
; *** Filename - Sqr.bb2

; *** Returns "3"
NPrint Sqr(9)
; *** Returns "2.828427"
NPrint Sqr(8)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

EXP

Mode(s): Amiga/Blitz
Function: calculate exponential
Syntax: exponential=Exp(VALUE)

The EXP function is used to return the exponential of a specified value. It calculates the xth power to the
base of the number (e=2.1782818284):

3.Mathematics

63

; *** EXPressive example
; *** Filename - Exp.bb2

Print Exp(1)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

LOG10

Mode(s): Amiga/Blitz
Function: return logarithm
Syntax: a=Log10(VALUE)

LOG10 returns the base 10 logarithm of a given value. For example:

; *** Log10 example
; *** Filename - Log10.bb2

; *** Returns ".9999999"
Print Log10(10)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

LOG

Mode(s): Amiga/Blitz
Function: return natural logarithm
Syntax: a=Log(VALUE)

This returns the natural (base e) logarithm of a given value. For example:

; *** Log example
; *** Filename - Log.bb2

; *** Returns "2.302584"
Print Log(10)
; *** Wait for a mouse click
MouseWait

3.Mathematics

64

; *** Return to Blitz Basic 2 editor
End

3.5 Trigonometry
PI

Mode(s): Amiga/Blitz
Function: return the Pi constant
Syntax: p=Pi

This function returns the Pi constant (3.14159265359...). This number is the ratio of the circumference of
a circle to its diameter, and is often used in trigonometry-based calculations. There is no actual value
for Pi as it goes on for an infinite number of decimal places. In Blitz Basic, Pi is accurate to six decimal
places. For example:

; *** A slice of Pi
; *** Filename - Pi.bb2

; *** Returns "3.141592"
Print Pi
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SIN

Mode(s): Amiga/Blitz
Function: calculate sine of an angle
Syntax: s=Sin(ANGLE)

The SIN function returns the sine of an angle. One very important graph, the sine wave,is used to model
many natural phenomena, including sound and light waves. Because the sine function repeats every 360
degrees the graph of (Y=Sin(X)) is periodic.

The following example uses SIN to display a string on a sine wave:

; *** Sine text
; *** Filename - Sine_Text.bb2

; *** Sine wave variables
RADIUS=10
OFFSET=0

3.Mathematics

65

YOFFSET=15
; *** Text string to sine
SINE$="Realtime sine wave text in Blitz BASIC!"
; *** Define palette
PalRGB 0,0,0,0,0
PalRGB 0,1,13,13,13
; *** Open screen and grab its BitMap
Screen 0,1,"Sine text"
ScreensBitMap 0,0
; *** Direct PRINT statement to BitMap
BitMapOutput 0
Use Palette 0
While X<=Len(SINE$)
 ; *** Grab characters, one by one
 TXT$=Mid$(SINE$,OFFSET,1)
 ; *** Y co-ordinate on sine wave
 Y=Sin(XY)*RADIUS
 Let XY+0.1
 If XY6
 XY=0
 End If
 ; *** Output characters
 Locate X,Y+YOFFSET
 Print TXT$
 ; *** Next character
 Let X+1
 Let OFFSET+1
Wend
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

COS

Mode(s): Amiga/Blitz
Function: calculate cosine of an angle
Syntax: c=Cos(ANGLE)

The COS function returns the cosine of an angle. The graph of (Y=Cos(X)) is exactly the same shape as
the sine curve except that it has been translated 90 degrees to the left. For example:

; *** Cosine wave
; *** Filename - Cos.bb2

; *** Define palette
PalRGB 0,0,0,0,0
PalRGB 0,1,13,13,13
; *** Open BLITZ mode display

3.Mathematics

66

BLITZ
BitMap 0,320,DispHeight,1
Slice 0,44,320,DispHeight,$fff8,1,8,2,320,320
Use Palette 0
Show 0
; *** Draw line at centre of cosine wave
Line 0,100,320,100,1
; *** Plot simple cosine wave
For A=1 To 3000
 Plot 10+A/10,Cos(Pi*2*A/1000)*80+100,1
Next
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

TAN

Mode(s): Amiga/Blitz
Function: calculate tangent of an angle
Syntax: t=Tan(ANGLE)

The TAN function returns the tangent of an angle. The following example uses TAN to create tangent
contours (a silly idea of mine):

; *** Tangent contours
; *** Filename - Tan.bb2

; *** Define palette
PalRGB 0,0,0,0,0
PalRGB 0,2,0,6,0
; *** Open Intuition screen
Screen 0,3,"Hello"
ScreensBitMap 0,0
; *** Grab user palette
Use Palette 0
Cls 2
; *** Plot tangent wave
For B=1 To 4000
 Plot B/10,Tan(Pi+B)*80+80,1
Next
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

3.Mathematics

67

ASIN

Mode(s): Amiga/Blitz
Function: calculate arc sine
Syntax: a=ASin(NUMBER)

ASIN calculates the angle needed to generate a value with SIN (an arc sine).

ACOS

Mode(s): Amiga/Blitz
Function: calculate arc cosine
Syntax: a=ACos(NUMBER)

Similarly, ACOS returns the arc cosine of a given number.

ATAN

Mode(s): Amiga/Blitz
Function: calculate arc tangent
Syntax: a=ATan(NUMBER)

The ATAN function returns the arc tangent of a given number.

HSIN

Mode(s): Amiga/Blitz
Function: calculate hyperbolic sine
Syntax: h=HSin(ANGLE)

The HSIN function calculates the hyperbolic sine of an angle.

HCOS

Mode(s): Amiga/Blitz
Function: calculate hyperbolic cosine
Syntax: h=HCos(ANGLE)

This function is used to find the hyperbolic cosine of an angle.

3.Mathematics

68

HTAN

Mode(s): Amiga/Blitz
Function: calculate hyperbolic tangent
Syntax: h=HTan(ANGLE)

HTAN returns the hyperbolic tangent of an angle.

3.6 Random numbers
Blitz Basic 2 comes complete with an inbuilt function to generate random numbers. Actually the
numbers aren't really random as they're the result of a decision made by the computer. If you knew
how Blitz created its random numbers then you'd be able to predict exactly which "random number" it
would select next.

It'd be pretty difficult to do this though because the computer chooses each number from a very long
list, and then repeats the list when it gets to the end. It would be almost impossible to figure out when
the list began again.

Public awareness of random numbers and of the laws of probability has increased greatly since the
launch of the National Lottery. Whilst Blitz Basic can't predict the results of the Lottery, it can be used to
generate a personalised set of numbers for you!

Right, now you've got the basic concept behind random numbers here's how Blitz Basic generates
them.

RND

Mode(s): Amiga/Blitz
Function: generate a random number
Syntax: r=Rnd[(NUMBER)]

The RND function returns a random integer between zero and NUMBER. If the optional NUMBER
parameter is not included then a random decimal between (0) and (1) is returned. Here is an example:

; *** Plot Starfield
; *** Filename - Plot_Example.bb2

; *** Number of stars in starfield
STARS=100
; *** Define palette (lots of whites and greys)
PalRGB 0,0,0,0,0
PalRGB 0,1,10,10,10
PalRGB 0,2,7,7,7
PalRGB 0,3,3,3,3
; *** Pop into Blitz mode
BLITZ

3.Mathematics

69

; *** Open BitMap
BitMap 0,320,DispHeight,2
; *** Plot starfield at random co-ordinates
For A=0 To STARS
 Plot Rnd(320),Rnd(DispHeight),Rnd(3)+1
Next A
; *** Open slice to display BitMap graphics
Slice 0,44,320,DispHeight,$fff8,2,8,8,320,320
; *** Grab user palette
Use Palette 0
Show 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

3.7 Machine code
Instead of using the decimal system, with ten as its base, computers use a form of binary called
hexadecimal (or hex for short), based on sixteen. As there are only ten digits available in our number
system we need six extra digits to do the counting. So we use A, B, C, D, E and F. And what comes after
F? Just as we, with ten fingers, write 10 for ten, so computers write 10 for sixteen.

HEX$

Mode(s): Amiga/Blitz
Function: convert a decimal number into a hexidecimal number
Syntax: h=Hex$(VALUE)

The HEX$ function converts numbers from the decimal system into hexadecimal numbers. The
hexadecimal system counts in units of 16 rather than 10, so a total of 16 different digits is needed to
represent the different numbers. The digits from 0 to 9 are used as normal, but the digits from 10 to 15
are signified by the letters A to F inclusive.

The decimal value to be converted is specified in brackets. The following chart shows the first 15
hexadecimal numbers, along with their decimal equivalents.

Table 3.4 : Hexadecimal notation

Hex digit: 0 1 2 3 4 5 6 7 8 9 A B C D E F
Decimal: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Here are a couple of examples:

; *** Hex$ example
; *** Filename - Hex$.bb2

3.Mathematics

70

; *** Returns "9"
NPrint Hex$(9)
; *** Returns "A"
NPrint Hex$(10)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

In fact, computers behave as though they had only two digits, represented by a low voltage, or off (0),
and a high voltage, or on (1). This is called the binary system, and the two binary digits are called bits:
so a bit is either (0) or (1).

BIN$

Mode(s): Amiga/Blitz
Function: convert a decimal number into a binary number
Syntax: b=Bin$(VALUE)

BIN$ converts a decimal number into the equivalent binary number. Here is a short program which
prints the first 50 binary and hexadecimal numbers:

; *** Bin$ it!
; *** Filename - Bin$.bb2

For A=1 To 50
 NPrint Hex$(A)," ",Bin$(A)
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

PEEK and POKE are two Basic commands which beginners often have problems with, although they are
really very simple. They differ from most Basic in that they act directly on the numbers stored in
computer memory. When you PEEK into a memory location the result is the number stored there with
POKE.

POKE

Mode(s): Amiga/Blitz
Statement: poke data into a memory location
Syntax: Poke [.TYPE] ADDRESS,DATA

The POKE statement moves a number from zero to 255 into the memory location at the specified
address. Here is an example:

3.Mathematics

71

; *** Poke example
; *** Filename - Poke.bb2

; *** Nip into BLITZ mode
BLITZ
; *** 32 colour display
BitMap 0,320,256,5
Slice 0,44,5
Show 0
X=0
; *** Poke colour register
For A=0 To 5000
 Poke.w $DFF180,X
 Let X+1
 If X=255
 X=0
 End If
Next A
; *** Return to Blitz Basic 2 editor
End

PEEK

Mode(s): Amiga/Blitz
Function: return the contents of a memory location
Syntax: p=Peek [.TYPE](ADDRESS)

The PEEK function returns a single 8-bit byte from a memory location at the specified address. For
example:

; *** Peek example
; *** Filename - Peek.bb2

; *** Put number 39 in address 10
Poke 10,39
; *** Grab contents of address 10
NPrint Peek(10)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

3.Mathematics

72

PEEKS$

Mode(s): Amiga/Blitz
Function: return a string of peeked bytes
Syntax: p$=Peeks$(ADDRESS,LENGTH)

PEEK$ reads the maximum number of characters specified in the LENGTH parameter, into a new string.
The ADDRESS parameter is the location of the first character to be read:

; *** Peek$ example
; *** Filename - Peek$.bb2

; *** Put Blitz Basic in address 10
Poke$ 10,"Blitz Basic"
; *** Grab contents of address 10
NPrint Peek$(10)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

CALL

Mode(s): Amiga/Blitz
Statement: call a machine code program
Syntax: Call ADDRESS

The CALL statement is used to run a machine code program straight from the memory location
specified by the ADDRESS parameter. For example:

; *** Call example
; *** Filename - Call.bb2

a.l=AllocMem_(14,1)

; *** Read machine code into memory
For k=0 To 12 Step 2
 Read w.w
 Poke a+k,w
Next

; *** Call machine code program
For B=1 To 10
 Call a
Next B

3.Mathematics

73

MouseWait
FreeMem_ a,14

; *** A machine code program
Data.w $70ff,$33c0,$00df,$f180,$51c8,$fff8,$4e75
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

3.8 End-of-Chapter summary
Blitz Basic supports standard mathematical functions such as exponentials and logarithms.

The powerful trigonometry functions include sine (SIN), cosine (COS) and tangent (TAN).

Random numbers can be generated using the RND function.

The hexadecimal system counts in units of 16 and the binary system uses zeros (0) and ones (1).

Machine code programs can be run from memory using the CALL statement.

Table 3.5 : Mathematics commands

Command Function
===
ABS Return an absolute value
ACOS Calculate arc cosine
ASIN Calculate arc sine
ATAN Calculate arc tangent
BIN$ Return binary number
CALL Call a machine code program
COS Calculate cosine of an angle
EXP Calculate exponential
FLOATMODE Change format of floating point numbers
FRAC Return fractional part of an expression
HCOS Calculate hyperbolic cosine
HEX$ Return hexadecimal number
HSIN Calculate hyperbolic sine
HTAN Calculate hyperbolic tangent
INT Return an integer
LOG Return natural logarithm
LOG10 Return logarithm
PEEK Return contents of memory location
PEEK$ Return a string of peeked bytes
PI Return Pi constant
POKE Poke data into memory location
QABS Return the absolute value of a quick
QFRAC Return fractional part of a quick
RND Generate a random number
SGN Return the sign of a number
SIN Calculate sine of an angle

3.Mathematics

74

SQR Calculate square root
TAN Calculate tangent of an angle

3.Mathematics

75

Chapter 4 : Control Structures
Control structures are those instructions which allow the Blitz Basic programmer to make decisions.
There are five main types of control structure: unconditional jumps, conditional jumps and structured
tests, conditional loops, unconditional loops, and controlled loops.

The chapter will also show you how to create Interrupt and error-trapping structures, and procedure
definitions.

4.1 Unconditional jumps
Unconditional jumps are those which require no decision-making whatsoever - they simply allow
branching from one part of a program to another. If computer programs were executed one line after
another, and jumping about to different parts of the program was not possible then code would very
quickly become messy and inefficient (see later). Here's how program flow can be transferred from the
main program to a sub-program, or sub-routine.

GOTO

Mode(s): Amiga/Blitz
Statement: jump to a specified program label
Syntax: Goto LABEL

With the help of a label, positions within a program can be set to allow branching with the GOTO
statement. The program execution is then branched to the position of the label. The label can be made
up of letters and numbers, however it must end with a colon. When branching to a label with GOTO, the
colon is not included in the name. It is not possible to branch out of or into procedures with the GOTO
statement. For example:

; *** Goto example
; *** Filename - Goto.bb2

NPrint "Jumping to label in a tick..."
VWait 50
; *** Jump to sub-routine
Goto LABEL
; *** Program flow cannot continue
End

; *** Sub-routine
LABEL:
NPrint "Arrived at label"
VWait 50
; *** Return to Blitz Basic 2 editor
End

76

Most programmers (such as myself) hate GOTOS as they make code messy and unreadable, so do use
them sparingly!

Another popular unconditional jump is the GOSUB, which is used to branch program flow from the
main program, to a sub-routine. A sub-routine is a sort of mini-program within a program. It carries out
a particular task, such as updating the display or printing a message, and you can send the computer to
it whenever you want this task carried out. This saves writing out the same program lines each time and
makes the program shorter and infinitely more readable.

In Blitz Basic, to tell the computer to branch to a sub-routine, you use the GOSUB statement. Sub-
routines can be positioned anywhere in your code and can be called as many or as few times as you
like.

GOSUB

Mode(s): Amiga/Blitz
Statement: jump to a sub-routine
Syntax: Gosub LABEL

RETURN

Mode(s): Amiga/Blitz
Statement: return from a sub-routine called by Gosub
Syntax: Return

The GOSUB statement branches program execution to the position of the label (known as a sub-
routine). The sub-routine is terminated by the RETURN statement. Unlike GOTO, GOSUB remembers the
location of the command immediately after the GOSUB (known as the stack). The RETURN statement
branches program execution back to the stack. This method allows one part of a program to be
accessed by many other parts of the same program. Here is an example:

; *** Gosub and Return example
; *** Filename - Gosub_Return.bb2

For A=1 To 3
 NPrint "This is the main program."
 VWait 50
 ; *** Jump to sub-routine
 Gosub LABEL2
Next A
; *** Return to Blitz Basic 2 editor
End

; *** Sub-routine
LABEL2:
NPrint "This is the sub-routine."
VWait 50
NPrint "(Returning to main program)"

4.Control Structures

77

VWait 50
; *** Return to main program
Return
; *** Program flow cannot continue
End

POP

Mode(s): Amiga/Blitz
Statement: exit from a program loop
Syntax: Pop For/Gosub/If/Repeat/Select/While

On occasions it may be necessary to exit from a particular type of program loop in order to branch
program execution to a different part of the program. POP is used to exit from jumps (both conditional
and unconditional), structured tests and conditional and controlled loops:

Table 4.1 : Control structures which can be POPped

Control structure Pop?
================================
GOSUB Y
IF...ENDIF Y
WHILE...WEND Y
REPEAT...UNTIL Y
FOR...TO...NEXT Y
SELECT...CASE...END SELECT Y

For example:

; *** Pop example
; *** Filename - Pop!.bb2
; *** Call sub-routine forever
Repeat
 Gosub JOYSTICK
Forever

MOOSE:
NPrint "Pop has called the MOUSE sub-routine"
VWait 50
; *** Return to Blitz Basic 2 editor
End

JOYSTICK:
NPrint "Press left mouse button"
; *** Exit sub-routine upon joystick event
If Joyb(0)=1 Then Pop Gosub : Goto MOOSE
Return

4.Control Structures

78

; *** Program flow cannot continue
End

4.2 Conditional jumps and structured tests
Often you will want to execute different parts of a program, depending on the outcome of an
expression. This is called a conditional jump, or structured test, depending upon the test format.

IF [THEN]

Mode(s): Amiga/Blitz
Statement: choose between alternative actions
Syntax: If EXPRESSION Then STATEMENTS

This command structure makes it possible to make one or more instructions operational only when a
logical condition if fulfilled. IF a condition is true THEN the following statements are executed. Here is
an example:

; *** If...Then example
; *** Conditional test
; *** Filename - Iffy.bb2

NPrint "Input your age (in years):-"
A=Edit(40)
If A<40 Then Print "You are young!"
If A>=40 Then Print "You are over the hill!"
VWait 100
; *** Return to Blitz Basic 2 editor
End

AND OR

Mode(s): Amiga/Blitz
Statement: qualify a condition
Syntax: If CONDITION1 AND CONDITION2 Then STATEMENT
Syntax 2: If CONDITION1 OR CONDITION2 Then STATEMENT

The logical AND operator can also be used to qualify a condition. If CONDITION1 is true, and
CONDITION2 is true, then STATEMENT is executed.

The OR operator can be used in the same way. If CONDITION1 or CONDITION 2 is true, then
STATEMENT is executed.

Here is a working example:

4.Control Structures

79

; *** AND...OR example
; *** Filename - AND...OR.bb2

A=5
B=5
C=11
; *** A=B and C is >10
If A=B AND C>10 Then NPrint "True"
; *** A=B, but C is >10
If A<B OR C>10 Then NPrint "Also True"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

NOT

Mode(s): Amiga/Blitz
Statement: negate logical expression
Syntax: n=NOT EXPRESSION

The NOT operator negates a logical expression. It is the only logical operation with one argument. Here
are some examples:

; *** NOT example
; *** Filename - NOT.bb2

NPrint NOT False ; *** returns -1
NPrint NOT True ; *** returns 0
NPrint NOT 0 ; *** returns -1
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** NOT example 2
; *** Filename - NOT2.bb2

; *** If...Then structure
A=5
B=5
NPrint "A = ",A
NPrint "B = ",B
If A=B Then NPrint "A=B"

4.Control Structures

80

NPrint ""

; *** NOT (negate) structure
A=5
B=10
NPrint "A = ",A
NPrint "B = ",B
If NOT A=B Then NPrint "A<>B"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

ENDIF

Mode(s): Amiga/Blitz
Statement: terminate a structured test
Syntax: If STRUCTURED_TEST
 EndIf

However, the IF...THEN conditional jump has been superseded in most BASIC languages by the infinitely
more powerful IF...ELSE...ENDIF structured test. If the optional THEN command is omitted then the test
becomes a structured one and must be terminated with the ENDIF command. This allows you to
execute many lines of Blitz code depending on the outcome of a single condition:

; *** If...EndIf example
; *** Structured test
; *** Filename - EndIffy.bb2

NPrint "Input your age (in years):-"
; *** Input some numbers
A=Edit(40)
If A<40
 Print "You are young!"
 ; *** If A>40...
 Else
 Print "You are over the hill!"
EndIf
VWait 100
; *** Return to Blitz Basic 2 editor
End

4.Control Structures

81

ELSE

Mode(s): Amiga/Blitz
Statement: qualify a condition
Syntax: If CONDITION Then STATEMENT Else STATEMENT2
Syntax 2: If CONDITION
 LIST OF STATEMENTS
 Else
 LIST OF STATEMENTS
 EndIf

ELSE is used in conjunction with IF and THEN (IF and ENDIF in a structured test) to qualify a condition.
The commands between IF and ELSE are executed when the logical condition following IF is true. Then
program execution continues with the next command in the program.

If the condition following IF is false then the commands after ELSE are executed instead. Here are some
examples:

; *** Else example 1
; *** Conditional test
; *** Filename - Else1.bb2

; *** Generate a random integer
A=Int(Rnd(100))
NPrint A," is a random number"
; *** Make a decision
If A<50 Then NPrint A," is less than 50" Else Gosub GREAT
VWait 100
; *** Return to Blitz Basic 2 editor
End

; *** Sub-routine
GREAT:
NPrint A," is greater than 50"
Return

; *** Else example2
; *** Structured test
; *** Filename - Else2.bb2

A=Int(Rnd(100))
NPrint A," is a random number"
If A<50
 NPrint A," is less than 50"
 ; *** If A>50...
 Else
 Gosub GREAT

4.Control Structures

82

EndIf
VWait 100
; *** Return to Blitz Basic 2 editor
End

; *** Sub-routine
GREAT:
NPrint A," is greater than 50"
Return

TRUE

Mode(s): Amiga/Blitz
Statement: return logical true (-1)
Syntax: t=True

TRUE returns the logical true of a constant. This is represented by the number (-1). A value of either true
(-1) or false (0) is produced every time a conditional test is executed. Try this example:

; *** True example
; *** Filename - True.bb2

Screen 0,3+8,"Mawwage"
Window 0,0,20,640,200,0,"Twoo Wove",1,2
For LOOP=1 To 5
 A=Int(Rnd(3))
 B=Int(Rnd(3))
 NPrint "A = ",A
 NPrint "B = ",B
 C=A<>B
 ; *** Logical true
 If C=True
 NPrint "A<>B"
 ; *** Logical false
 Else
 NPrint "A=B"
 EndIf
 NPrint ""
 VWait 20
Next LOOP
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

4.Control Structures

83

FALSE

Mode(s): Amiga/Blitz
Statement: return logical false (0)
Syntax: f=False

FALSE returns the logical false of a constant. This is represented by the number (0). A value of either
true (-1) or false (0) is produced every time a conditional test is executed. Example:

; *** False example
; *** Filename - False.bb2

Screen 0,3+8,"Skween"
Window 0,0,20,640,200,$1000,"Whindoow",1,2
A$=Edit$(10)
B=Len(A$)
; *** Logical false
If B=False
 NPrint "NO TEXT WAS ENTERED!"
; *** Logical true
Else
 NPrint "Length = ",B," characters"
EndIf
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SELECT CASE END SELECT

Mode(s): Amiga/Blitz
Statement: hold the result of an expression
Syntax: Select EXPRESSION
 Case 1
 ; *** Execute if expression = 1
 Case 2
 ; *** Execute if expression = 2
 End Select

SELECT examines and stores the result of the specified expression.

The CASE statement is used following SELECT to execute a section of program code when the
expression specified by CASE is equivalent to the expression specified by SELECT.

END SELECT is used to terminate a SELECT...CASE control structure. For example:

4.Control Structures

84

; *** Select example
; *** Filename - Select.bb2

For A=1 To 10
 N=Int(Rnd(3))+1
 Select N
 ; *** Number one generated
 Case 1
 NPrint "One"
 ; *** Number two generated
 Case 2
 NPrint "Two"
 ; *** Number three generated
 Case 3
 NPrint "Three"
 End Select
 VWait 10
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

DEFAULT

Mode(s): Amiga/Blitz
Statement: execute if CASE not satisfied
Syntax: Default

If none of the CASE statements are satisfied then DEFAULT may be used to cause a section of program
code to be executed if none of the CASE statements were satisfied. Try the following example:

; *** Default example
; *** Filename - Default.bb2

For A=1 To 25
 N=Int(Rnd(10))+1
 Select N
 ; *** Number one generated
 Case 1
 NPrint "One"
 ; *** Number two generated
 Case 2
 NPrint "Two"
 ; *** Number three generated
 Case 3
 NPrint "Three"

4.Control Structures

85

 ; *** Case not satisfied (N>3)
 Default
 NPrint "Number greater than 3!"
 End Select
 VWait 10
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

ON

Mode(s): Amiga/Blitz
Statement: jump to a label on the result of an expression
Syntax: On EXPRESSION Goto LIST OF LABELS
Syntax 2: On EXPRESSION Gosub LIST OF LABELS

ON tells a program to branch, via either a GOTO or a GOSUB, to one of a number of program labels
depending upon the result of the expression. The program labels must be separated by commas.

If the expression results in one then the first program label will be branched to. If the expression results
in two then the second program label will be branched to and so on.

If the result of the expression is negative, or greater than the number of program labels, then program
execution will continue from the command following ON. Try the following example on (no pun
intended) for size:

; *** On example
; *** Filename - On.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
; *** Branch to sub-routines in turn
For LOOP=1 To 3
 On LOOP Gosub STARS,LINES,CIRCLES
VWait 50
Next LOOP
; *** Return to Blitz Basic 2 editor
End

; *** Draw 100 stars
STARS:
For A=1 To 100
 Plot Rnd(320),Rnd(256),Rnd(30)+1
Next A
Return

4.Control Structures

86

; *** Draw 100 lines
LINES:
For B=1 To 100
 Line Rnd(320),Rnd(256),Rnd(320),Rnd(256),Rnd(30)+1
Next B
Return

; *** Draw 100 circles
CIRCLES:
For C=1 To 100
 Circle Rnd(320),Rnd(256),Rnd(10)+1,Rnd(30)+1
Next C
Return

4.3 Conditional loops
The conditional loop is one of the most powerful BASIC control structures. It is used to repeat a section
of code until the condition of the loop is satisfied.

WHILE WEND

Mode(s): Amiga/Blitz
Statement: repeat loop while condition is true
Syntax: While CONDITION
 LIST OF STATEMENTS
 Wend

The WHILE and WEND instructions are used to create a loop which is to be executed as long as a logical
condition is true. When a WHILE statement is encountered, its condition is checked and the loop is only
executed if the condition is true. When WEND is reached the program execution jumps back to WHILE
and the loop is repeated. Try the following examples:

; *** While...Wend example ** Filename - While...Wend.bb2

NPrint "Counting to 100:"
VWait 50
; *** Repeat until A=100
While A<100
 Let A+1
 NPrint A
Wend
NPrint "Finished!"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

4.Control Structures

87

; *** While...Wend example 2
; *** Filename - While...Wend2.bb2

BLITZ
Mouse On
BitMap 0,320,256,3
Slice 0,44,3
Show 0
; *** Repeat until mouse button is pressed
While Joyb(0)=0
 Line Rnd(320),Rnd(256),MouseX,MouseY,Rnd(5)+1
Wend
; *** Return to Blitz Basic 2 editor
End

REPEAT UNTIL

Mode(s): Amiga/Blitz
Statement: repeat loop until condition is satisfied
Syntax: Repeat
 LIST OF STATEMENTS
 Until CONDITION

The instructions REPEAT and UNTIL are used to create a loop which is to be executed until a logical
condition exists. When the REPEAT statement is encountered in a program, the loop is executed. Then
the logical condition is checked and if is true then the loop is cancelled and program execution
continues after the UNTIL instruction. Both commands should occupy their own lines. Here are some
examples:

; *** Repeat...Until example
; *** Filename - Repeat...Until.bb2

BitMap 0,320,256,3
BLITZ
Slice 0,44,3
Show 0
; *** Repeat loop until mouse button is pressed
Repeat
 Circlef Rnd(320),Rnd(256),Rnd(10)+5,Rnd(6)+1
Until Joyb(0)>0
; *** Return to Blitz Basic 2 editor
End

4.Control Structures

88

; *** Repeat...Until example 2
; *** Filename - Repeat...Until2.bb2

PalRGB 0,1,15,15,15
BLITZ
Mouse On
BitMap 0,320,256,3
Slice 0,44,3
Show 0
Use Palette 0
; *** Plot a random starfield
For A=1 To 15
 Plot Int(Rnd(320)),Int(Rnd(50)),Rnd(5)+2
Next A
For B=1 To 15
 ; *** Search for coloured stars
 Repeat
 X=Int(Rnd(320))
 Y=Int(Rnd(50))
 Until Joyb(0)>0 OR Point(X,Y)>1
 ; *** Change coloured star to white
 Plot X,Y,1
; *** Loop back until all stars recoloured
Next B
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

4.4 Unconditional loops
Unconditional loops, like unconditional jumps, require no decision-making whatsoever. These loops are
used to repeat a section of code forever, hence the following Blitz Basic keyword.

FOREVER

Mode(s): Amiga/Blitz
Statement: cause a Repeat loop to repeat infinitely
Syntax: Repeat
 LIST OF STATEMENTS
 Forever

FOREVER is used instead of UNTIL in a REPEAT...UNTIL loop to create an endless loop. The program
executes the commands between REPEAT and UNTIL and branches back to REPEAT when UNTIL is
reached. Both commands should occupy their own lines, as in the following example:

4.Control Structures

89

; *** Repeat...Forever example
; *** Filename - Repeat...Forever.bb2

; *** Repeat loop forever
Repeat
 NPrint "This loop will never end. Don't run this example!"
Forever
; *** This command is never reached
End

4.5 Controlled loops
Often you need to do the same thing several times in a program. Although you can repeat part of a
program using GOTO, a much better way is to repeat the same lines several times using the
FOR...TO...NEXT structure. This is known as a controlled loop as the loop is controlled by the
programmer, rather than the user.

FOR TO NEXT

Mode(s): Amiga/Blitz
Statement: repeat loop a specific number of times
Syntax: For INDEX=FIRST_NUMBER To LAST_NUMBER [Step INC]

The FOR...TO...NEXT loop repeats a list of instructions a specified number of times. INDEX counts the
number of times the loop is repeated and is increased by one each time the loop repeats. The number
that INDEX is increased by (or decreased by) can be altered by including the Step INC parameter (see
later). At the start of the loop, the INDEX counter is loaded with the FIRST_NUMBER value and is
increased each program loop until it reaches the LAST_NUMBER value. Here is an example:

; *** For...To...Next example
; *** Filename - For...To...Next.bb2

BitMap 0,320,256,5
BLITZ
Slice 0,44,5
Show 0
BitMapOutput 0
NPrint "200 rectangles!"
VWait 100
Cls
; *** Simple For...To...Next loop (200 loops)
For A=1 To 200
 Boxf Rnd(320),Rnd(256),Rnd(320),Rnd(256),Rnd(30)+1
Next A
VWait 50
Cls

4.Control Structures

90

NPrint "1000 circles!"
VWait 100
Cls
; *** A larger For...To...Next loop (1000 loops)
For B=1 To 1000
 Circlef Rnd(320),Rnd(256),Rnd(10)+5,Rnd(30)+1
Next B
VWait 50
; *** Return to Blitz Basic 2 editor
End

If the optional Step INC parameter is included then INC will be added to the counter after each loop
instead of one (the default). If the value for INC is negative then the entire loop will be performed in
reverse. For example:

; *** For..To...Next example 2
; *** Filename - For...To...Next2.bb2

BLITZ
BitMap 0,320,256,1
BitMapOutput 0
Slice 0,44,1
Show 0
Locate 0,0
; *** Step 2 loop
For A=1 To 10 Step 2
 NPrint A
Next A
VWait 50
Locate 0,0
; *** Decreasing loop
For B=10 To 1 Step -1
 NPrint B
Next B
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

4.6 Interrupt handling
Interrupts are hardware signals which cause the Amiga's processor to stop what it is doing (usually the
execution of the main program) and execute a pre-defined piece of code called an interrupt routine, or
interrupt handler. Once the interrupt handler has finished executing, the main program is restarted as if
nothing has happened.

There are 14 different types of interrupt on the Amiga:

4.Control Structures

91

Table 4.2 : Blitz Basic Interrupts

Interrupt Cause of Interrupt
===
0 Serial transmit buffer empty
1 Disk block read/written
2 Software interrupt
3 CIA ports interrupt
4 Copper interrupt
5 Vertical blank
6 Blitter finished
7 Audio channel 0 pointer/length fetched
8 Audio channel 1 pointer/length fetched
9 Audio channel 2 pointer/length fetched
10 Audio channel 3 pointer/length fetched
11 Serial receive buffer full
12 Floppy disk sync
13 External interrupt

Interrupt handlers should never access string variables or literal strings. In Amiga mode no Blitter,
Intuition or file access command may be executed by interrupt handlers.

The most useful interrupt is the vertical blank interrupt (number 5). This interrupt occurs every time a
vertical blank period has elapsed (about every sixtieth of a second). Consequently, any code defined as
a vertical blank interrupt is executed every sixtieth of a second. Vertical blank interrupt handlers must
never take longer than one sixtieth of a second to execute, otherwise you are asking for trouble!

SETINT

Mode(s): Amiga/Blitz
Statement: declare code as interrupt code
Syntax: SetInt TYPE

END SETINT

Mode(s): Amiga/Blitz
Statement: end interrupt code
Syntax: End SetInt

The SETINT statement is used to define interrupt code. Any code which appears within an interrupt
definition is executed every time the specified interrupt occurs. END SETINT is used to terminate an
interrupt definition.

In the first example I am using the vertical blank interrupt to modify a colour register during vertical
blank periods, and in the second the same interrupt is used to flash the Amiga's power light:

4.Control Structures

92

; *** SetInt example 1
; *** Filename - SetInt1.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0

; *** Create background task
SetInt 5
 Let A+1
 Poke.w $dff180,A
End SetInt

; *** Main program
For B=1 To 3000
 Circlef Rnd(320),Rnd(200)+50,Rnd(20)+10,Rnd(5)+1
Next B
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** SetInt example 2
; *** Filename - SetInt2.bb2

BLITZ
BitMap 0,320,256,3
BitMapOutput 0
Slice 0,44,3
Show 0
D=1
; *** Create background task
SetInt 5
 ; *** Toggle power light rapidly
 If D=0
 Filter On
 Else
 Filter Off
 EndIf
 D=1-D
End SetInt

; *** Main program
For B=1 To 3000
 Colour Rnd(5)+1
 Locate Rnd(40),Rnd(20)+10
 Print "Hello"

4.Control Structures

93

Next B
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

CLRINT

Mode(s): Amiga/Blitz
Statement: remove interrupt handler
Syntax: ClrInt TYPE

CLRINT is used to remove an interrupt handler. The TYPE parameter specifies the interrupt type. For
example:

; *** ClrInt example
; *** Filename - ClrInt.bb2

BLITZ
BitMap 0,320,256,3
BitMapOutput 0
Slice 0,44,3
Show 0
D=1
; *** Create background task
SetInt 5
 Cls Rnd(5)+1
End SetInt
; *** Wait for a mouse click
MouseWait
; *** Remove background task
ClrInt 5
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

4.7 Error handling
Normally any runtime errors which may occur are reported by Blitz Basic's direct mode. However, it is
often useful to trap these errors before they are reported by Blitz; this is where custom error handling
come in. Custom error handlers are often used during the development stage, and removed once all of
the bugs - or "undocumented features", as some programmers refer to them - have been ironed out.

4.Control Structures

94

SETERR

Mode(s): Amiga/Blitz
Statement: declare error handler
Syntax: SetErr

END SETERR

Mode(s): Amiga/Blitz
Statement: end error handling definition
Syntax: End SetErr

The SETERR statement defines a custom error handler. Any program code which appears inside a
custom error handler will be executed when any Blitz Basic runtime errors occur. Error handlers should
be terminated with the END SETERR statement.

This will work fine until the program tries to blit a shape and it is discovered that there are no shape
objects in memory:

; *** SetErr example 1
; *** Filename - SetErr1.bb2

; *** Create error handler
SetErr
 NPrint "Error!!!"
 NPrint "Press Left Mouse Button"
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
End SetErr
; *** There is no object to blit!
Blit 0,100,100
; *** These commands are never reached
MouseWait
End

The second error handler generates an error when the program tries to access an array which has too
few dimensions:

; *** SetErr example 2
; *** Filename - SetErr2.bb2

; *** Create error handler
SetErr

4.Control Structures

95

 NPrint "Error!!!"
 NPrint "Press Left Mouse Button"
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
End SetErr
; *** A$ has too few dimensions!
Dim A$(3)
; *** Generate dimension overflow error
For B=1 To 4
 A$(B)="Blitz Basic "+Str$(B)
 NPrint A$(B)
Next B
; *** These commands are never reached
MouseWait
End

CLRERR

Mode(s): Amiga/Blitz
Statement: remove error handler
Syntax: ClrErr

This statement is used to remove a custom error handler. For example:

; *** ClrErr example ** Filename - ClrErr.bb2
; *** Create custom error handler
SetErr
 NPrint "This error handler will never work"
End SetErr
; *** Remove custom error handler
ClrErr
; *** Generate error
Blit 0,100,100
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

ERRFAIL

Mode(s): Amiga/Blitz
Statement: cause a normal error within error handler
Syntax: ErrFail

4.Control Structures

96

The ERRFAIL statement is used to temporarily suspend the custom error handler (i.e. the error occurs as
normal). Error reporting is then returned to direct mode. Here is an example:

; *** ErrFail example
; *** Filename - ErrFail.bb2

; *** Define error handler
SetErr
 NPrint "Error!!!"
 NPrint ""
 NPrint "Press left mouse button to print"
 NPrint "actual error in direct mode."
 ; *** Wait for a mouse click
 MouseWait
 ; *** Suspend error handler
 ErrFail
End SetErr
; *** Create error
Dim A$(3)
For B=1 To 4
 A$(B)="Blitz Basic "+Str$(B)
 NPrint A$(B)
Next B
; *** These commands are never reached
MouseWait
End

4.8 Procedures
A procedure is a specially defined module of code that can be called from your main program. Blitz
Basic 2 supports two types of procedure, the function-type procedure and the statement-type
procedure. A procedure which does not return a value is known as a statement and a procedure which
does return a value is known as a function. Both are able to use their own local variables and may gain
access to global variables through the use of the SHARED statement.

You may pass up to six variables to a procedure. These variables must be of primitive type. NewType
variables may not be used.

4.8.1 Statement-type procedures
STATEMENT

Mode(s): Amiga/Blitz
Statement: create a statement-type procedure
Syntax: Statement NAME{}
Syntax 2: Statement NAME{LIST OF OPTIONAL PARAMETERS}

4.Control Structures

97

END STATEMENT

Mode(s): Amiga/Blitz
Statement: end a statement-type procedure
Syntax: End Statement

A statement-type procedure is created by defining the statement with the STATEMENT statement. If the
optional list of parameters are included then parameters may be passed to the procedure. The
procedure must be closed with the END STATEMENT statement. Procedures must be called up as
follows:

NAME{}

or:

NAME{LIST OF OPTIONAL PARAMETERS}

Why not try the following examples:

; *** Statement-type procedure
; *** Filename - Statement.bb2

; *** Define procedure
Statement AGE{A}
 NPrint "You are ",A*12," months old."
End Statement

NPrint "Please input your age in years:"
A=Edit(20)
; *** Call procedure
AGE{A}
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Statement-type procedure 2
; *** Filename - Statement2.bb2

; *** Define procedure
Statement UPPER{A$}
 C$=UCASE$(Mid$(A$,1,1))

4.Control Structures

98

 B$=Right$(A$,Len(A$)-1)
 D$=C$+B$
 NPrint D$
End Statement

; *** Input name
NPrint "Enter your first name in lower case:-"
A$=Edit$(20)
; *** Call procedure
UPPER{A$}
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

STATEMENT RETURN

Mode(s): Amiga/Blitz
Statement: exit a statement-type procedure immediately
Syntax: Statement Return

STATEMENT RETURN is used to exit from a statement-type procedure before the end of the procedure.
Here is an example which exits from the procedure structure once the value (0) is generated:

; *** Statement Return
; *** Filename - Statement_Return.bb2

; *** Define procedure
Statement RANDOM{A}
 B=Int(Rnd(A))
 If B=0 Then Statement Return
 NPrint "Random number is: ",B
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
End Statement

; *** Input maximum number
NPrint "Input maximum random number:"
A=Edit(20)
; *** Call procedure
RANDOM{A}
; *** These commands are never reached
MouseWait
End

4.Control Structures

99

4.8.2 Function-type procedures
FUNCTION

Mode(s): Amiga/Blitz
Statement: create a function-type procedure
Syntax: Function [.TYPE] NAME{}
Syntax 2: Function [.TYPE] NAME{LIST OF OPTIONAL PARAMETERS}

END FUNCTION

Mode(s): Amiga/Blitz
Statement: end a function-type procedure
Syntax: End Function

FUNCTION RETURN

Mode(s): Amiga/Blitz
Statement: exit a function-type procedure immediately
Syntax: Function Return EXPRESSION

The function-type procedure returns a value. It is created by defining the function with the FUNCTION
statement. If the optional list of parameters are included then parameters may be passed to the
procedure. The procedure must be closed with the END FUNCTION statement.

The optional TYPE parameter may be used to determine what type of result is returned by the function
using FUNCTION RETURN. It must be one of Blitz Basic's six primitive variable types:

Table 4.3 : Blitz Basic types

Type Suffix Example
============================
Byte .b Function.b
Word .w Function.w
Long .l Function.l
Quick .q Function.q
Float .f Function.f
String $ Function$

If TYPE is omitted then the current default type will be used (default is quick).

FUNCTION RETURN is used within function-type procedures to return the result of the function. Try the
following examples:

4.Control Structures

100

; *** Function-type procedure
; *** Filename - Function.bb2

; *** Define procedure
Function$ HEXBIN{A}
 Function Return Hex$(A)+" "+Bin$(A)
End Function

; *** Call procedure 10 times
For A=1 To 10
 NPrint HEXBIN{A}
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Function-type procedure 2
; *** Filename - Function2.bb2

; *** Define procedure
Function$ BACKWARDS{A$}
 A=Len(A$)
 For LOOP=1 To A
 B$=B$+Mid$(A$,A,1)
 Let A-1
 Next LOOP
 Function Return UCase$(B$)
End Function

; *** Input name
NPrint "Enter your name :-"
A$=Edit$(20)
; *** Call procedure
NPrint BACKWARDS{A$}
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

4.Control Structures

101

4.8.3 Global variables
SHARED

Mode(s): Amiga/Blitz
Statement: define a list of global variables
Syntax: Shared LIST OF VARIABLES

Normally, variables inside procedures cannot be written to or read from the main program. We call
these variables "local variables" as they can only be used by the procedure itself. All the variables
outside of procedures are known as "global variables" - they can be accessed from anywhere.

The SHARED statement takes a list of local variables inside a procedure definition and converts them to
global variables, which can be accessed by the main program. This offers an easy way of transferring
large amounts of data between procedures. Here is an example:

; *** Shared example
; *** Filename - Shared.bb2

SPEED=100
; *** Define procedure
Statement AGE{}
 NPrint SPEED ; *** Prints "0"
 SHARED SPEED
 NPrint SPEED ; *** Prints "100"
End Statement

; *** Call procedure
AGE{}
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

4.8.4 Some useful procedures
Experienced programmers will find that, over the years, they build up a large collection of useful
programs, routines and procedures. For the more inexperienced among us, here are three really useful
(depending on your point of view) procedures that can be easily incorporated into your own creations,
or used independently.

Our first procedure centres a text string on the x-axis. It works by dividing a string in two and
positioning one half left of the centre of the display, and the other half right of the centre. At present
the procedure only works on low-resolution BitMaps. Try improving it so that it automatically centres a
string on any resolution screen or BitMap:

4.Control Structures

102

; *** Useful Procedure 1
; *** Filename - Proc1.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
BitMapOutput 0

; *** Define procedure
Statement CENTRE{A$}
 ; *** Half screen width and text
 X=40/2-Len(A$)/2
 Locate X,10
 Colour 4
 Print A$
End Statement

; *** Call procedure
A$="Blitz Basic centred text"
CENTRE{A$}
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

Our second procedure generates a specified number of random numbers. "But what's wrong with the
RND function", I hear you cry! Well, if you were to generate a series of random numbers using RND
then the chances are that the same number will come up more than once. This routine can be used to
generate any amount of random numbers, and what's more, they will never repeat:

; *** Useful Procedure 2
; *** Filename - Proc2.bb2

; *** Number of random numbers
MAX=10
; *** Array to hold numbers
Dim RANDOM(MAX)

; *** Define procedure
Statement RANDOM{MAX}
 SHARED RANDOM()
 ; *** Generate random numbers
 For A=1 To MAX
 RANDOM(A)=A
 Next A
 ; *** Mix them up
 Repeat

4.Control Structures

103

 Repeat
 B=Rnd(MAX)+1
 Until B>0
 Exchange RANDOM(B),RANDOM(MAX)
 Let C+1
 Until C=MAX
End Statement

; *** Call procedure
RANDOM{MAX}
For T=1 To MAX
 NPrint RANDOM(T)
Next T
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

Our third and final procedure is used to solve general quadratic equations. It is primarily of use to A-
Level Mathematics students (who will understand what a general quadratic equation is!). Simply enter
the appropriate values for A, B and C and the procedure will do the rest. Try adding an error generator
for quadratic equations which cannot be solved:

; *** Useful Procedure 3
; *** Filename - Proc3.bb2

Statement QUADRATIC{A,B,C}
 ; *** Negate B
 B=NOT B
 ; *** Maths jiggery pokery
 D=Sqr((B*B)-(4*A*C))
 E=(B+D)/(2*A)
 F=(B-D)/(2*A)
 ; *** Output answer
 NPrint "X = ",E
 NPrint "or = ",F
End Statement

; *** Input appropriate values
NPrint "Enter A:"
A=Edit(2)
NPrint "Enter B:"
B=Edit(2)
NPrint "Enter C:"
C=Edit(2)
NPrint ""
; *** Call procedure
QUADRATIC{A,B,C}
; *** Wait for a mouse click
MouseWait

4.Control Structures

104

; *** Return to Blitz Basic 2 editor
End

4.9 End-of-Chapter summary
There are five control structures in Blitz Basic: unconditional jumps (GOTO and GOSUB), conditional
jumps and structured tests (IF...ENDIF & SELECT...CASE...END SELECT), conditional loops (WHILE...WEND
& REPEAT...UNTIL), unconditional loops (REPEAT...FOREVER), and controlled loops (FOR...TO...NEXT).

Unconditional jumps are those which require no decision-making whatsoever - they simply allow
branching from one part of a program to another.

Conditional jumps and structured tests are used to execute different parts of a program, depending on
the outcome of an expression.

The conditional loop is used to repeat a section of code until the condition of the loop is satisfied.

Unconditional loops, like unconditional jumps, require no decision-making whatsoever. These loops are
used to repeat a section of code forever.

Controlled loops are used to execute the same program lines several times in a program.

Interrupt handlers are defined using SETINT and END SETINT. Interrupts are hardware signals which
cause the Amiga's processor to stop what it is doing (usually the execution of the main program) and
execute a pre-defined piece of code called an interrupt handler. Vertical blank interrupts are executed
every sixtieth of a second.

Runtime errors can be trapped using custom error handlers. These are created with the SETERR and
END SETERR statements. Error handlers are suspended with ERRFAIL.

Blitz Basic 2 supports two types of procedure: functions and statements. Procedures which do not
return values are known as statements. Procedures which do return values are known as functions. Up
to six values can be passed to Blitz Basic 2 procedures.

GOTOs and GOSUBS from inside procedures to labels outside of procedure definitions are illegal.

Variables used in procedure definitions are initialised with every call of the procedure.

Function-type procedures can return any primitive type using the FUNCTION RETURN statement.

Local variables are those contained within procedure definitions and may only be used by procedures.

Procedures may gain access to global variables through the use of the SHARED statement.

4.Control Structures

105

Chapter 5 : Input/Output
This chapter will show you how to output text onto a screen or BitMap. It will aid you in the reading of
the keyboard and the joystick and mice ports, and teach you the basics of file access.

5.1 Text
Virtually all computer programs use text. Text can be used to prompt the user for input, or to display a
congratulatory message or high-score table. Blitz Basic can be used to create anything from simple
messages to fully-blown text adventures!

5.1.1 Printing on screen
PRINT

Mode(s): Amiga/Blitz
Statement: print items on screen
Syntax: Print EXPRESSION

The PRINT statement is used to output numeric variables and strings to the current output channel.
PRINT followed by a string variable or expression displays the string or strings they represent (strings
must be enclosed in quotation marks). Followed by a numeric expression, PRINT displays the
expression's value. Followed by a null string (""), PRINT displays a blank line. Here are some examples
which all produce the same output:

; *** Print examples
; *** Filename - Print.bb2

Print "Blitz Basic is the best!"
Print "Blitz Basic"+" is the best!"
Print "Blitz Basic"," is the best!"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

NPRINT

Mode(s): Amiga/Blitz
Statement: print items on screen
Syntax: NPrint EXPRESSION

NPRINT is used to output numeric variables and strings to the current output channel. NPRINT followed
by a string variable or expression displays the string or strings they represent (strings must be enclosed

106

in quotation marks). Followed by a numeric expression, NPRINT displays the expression's value.
Followed by a null string (""), NPRINT displays a blank line.

Unlike PRINT, NPRINT automatically outputs a newline character. For example:

; *** NPrint example
; *** Filename - NPrint.bb2

Print "Going "
Print "down"
NPrint ""
NPrint ""
NPrint "Going"
NPrint "Down"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

BITMAPOUTPUT

Mode(s): Amiga/Blitz
Statement: direct PRINT commands to a BitMap
Syntax: BitMapOutput BITMAP#

The BITMAPOUTPUT statement is used to direct all future PRINT or NPRINT statements to a BitMap.
Fonts used for BitMap output must be eight-by-eight non-proportional fonts (see later). Here is an
example:

; *** BitMapOutput example
; *** Filename - BitMapOutput.bb2

; *** Pop into Blitz mode
BLITZ
; *** Open BitMap to display graphics
BitMap 0,320,256,3
; *** Direct PRINT statements to BitMap
BitMapOutput 0
; *** Open a Slice and display BitMap
Slice 0,44,3
Show 0
; *** Output some text
For A=1 To 50
 Locate Rnd(40),Rnd(25)
 Colour Rnd(5)+1
 Print "BitMap Output"
Next A
; *** Wait for a mouse click

5.Input/Output

107

MouseWait
; *** Return to Blitz Basic 2 editor
End

DEFAULTOUTPUT

Mode(s): Amiga/Blitz
Statement: send PRINT statements to the default CLI window
Syntax: DefaultOutput

This statement causes all future PRINT and NPRINT statements to send their output to the default CLI
window. This is the CLI window the program was run from. For example:

; *** DefaultOutput example
; *** Filename - DefaultOutput.bb2

; *** Open an Intuition screen and window
Screen 0,0,100,320,200,3,0,"A Screen",1,2
Window 0,10,40,200,50,0,"A Window",1,2
; *** Output text to window
Print "hello from window"
; *** Direct PRINT statement to CLI window
DefaultOutput
Print "Hello from CLI window"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

5.1.2 Formating numeric strings
FORMAT

Mode(s): Amiga/Blitz
Statement: control output of numeric values
Syntax: Format STRING$

FORMAT is used to control the output of numeric values with PRINT and NPRINT. STRING$ is a string
expression, of up to 80 characters in length, containing formatting information:

5.Input/Output

108

Table 5.1 : Text formatting

Character Description
===
0 Replace missing digits with zeros
. Insert decimal point
, Insert commas every 3 digits to the left
+ Insert sign of value
- Insert sign of value, if negative
Replace missing digits with spaces

Here is an example:

; *** Amiga Format
; *** Filename - Format.bb2

Format "###.00"
NPrint 156 ; *** Returns "156.00"
Format "+#"
NPrint 5 ; *** Returns "+5"
Format "###,###,###"
NPrint 390000000 ; *** Returns "390,000,000"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

5.1.3 Changing the text style
LOADBLITZFONT

Mode(s): Amiga
Statement: load a new font for BitMap output
Syntax: LoadBlitzFont FONT#,"FILENAME.FONT"

The LOADBLITZFONT statement creates a blitzfont object. Blitzfonts are used in the rendering of text to
BitMaps only. The default font is the ROM-resident topaz font, however this can be replaced with the
blitzfont of your choice. The "FILENAME.FONT" parameter specifies the name of the font to load, which
must be located in the fonts directory of the disk.

LOADBLITZFONT can only be used with eight-by-eight non-proportional fonts. Here is an example:

5.Input/Output

109

; *** LoadBlitzFont example
; *** Filename - LoadBlitzFont.bb2

; *** Load a BlitzFont into memory
LoadBlitzFont 0,"FILENAME.FONT"
; *** Wait for disk access to finish
VWait 20
BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
; *** Direct NPRINT statement to BitMap
BitMapOutput 0
Locate 0,5
Colour 4
NPrint "THE QUICK BROWN FOX JUMPED ETC."
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

USEBLITZFONT

Mode(s): Amiga/Blitz
Statement: select current font
Syntax: UseBlitzFont FONT#

If there is more than one blitzfont in memory then USEBLITZFONT provides an easy method for
switching between them. FONT# is the number of the blitzfont to use. For example:

; *** Use BlitzFont example
; *** Filename - Use BlitzFont.bb2

; *** Load two BlitzFonts into memory
LoadBlitzFont 0,"FILENAME.FONT"
LoadBlitzFont 1,"FILENAME2.FONT"
; *** Wait for disk access to finish
VWait 20
BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
BitMapOutput 0
Locate 0,5
Colour 4
; *** First BlitzFont
Use BlitzFont 0

5.Input/Output

110

NPrint "THE QUICK BROWN FOX JUMPED ETC."
Colour 2
; *** Second BlitzFont
Use BlitzFont 1
NPrint "OVER THE LAZY DOG..."
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

FREEBLITZFONT

Mode(s): Amiga/Blitz
Statement: erase a font from memory
Syntax: FreeBlitzFont FONT#

FREEBLITZFONT erases a specified blitzfont from memory. This frees any memory previously occupied
by the font. Here's an example:

; *** FreeBlitzFont example
; *** Filename - FreeBlitzFont.bb2

; *** Load a BlitzFont into memory
LoadBlitzFont 0,"FILENAME.FONT"
; *** Wait for disk access to finish
VWait 20
BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
BitMapOutput 0
NPrint "THE QUICK BROWN FOX JUMPED ETC."
; *** Remove BlitzFont from memory
FreeBlitzFont 0
NPrint "THE SLOW RED SLUG DUCKED ETC."
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

5.1.4 Setting the text colour
Even if the output of your programs consists just of PRINT or NPRINT statements, there is no reason
why they cannot be arranged on the screen in an interesting, clear and attractive way. Use of colour
within PRINT statements from time to time can enhance the message and improve its legibility. Random
colour changes, for example, can be extremely effective.

5.Input/Output

111

COLOUR

Mode(s): Amiga/Blitz
Statement: set the colour of text
Syntax: Colour FOREGROUND[,BACKGROUND]

The COLOUR statement is used to set the colour used to render text to BitMaps. FOREGROUND is the
colour of the text and BACKGROUND is the colour of the text background. Here are a couple of
examples which illustrate the use of COLOUR in both Blitz and Amiga mode:

; *** Colour example 1
; *** Filename - Colour1.bb2

BLITZ
; *** Open a Blitz mode display
BitMap 0,320,256,5
Slice 0,44,5
Show 0
; *** Direct NPRINT statements to BitMap
BitMapOutput 0
For A=1 To 30
 ; *** Select a random colour
 Colour Rnd(30)+1
 NPrint "All the colours of the rainbow(and some)"
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Colour example 2
; *** Filename - Colour2.bb2

; *** Open an Intuition display
Screen 0,5,"My screen"
ScreensBitMap 0,0
; *** Direct NPRINT statements to BitMap
BitMapOutput 0
Locate 0,4
For B=1 To 20
 ; *** Select a random colour
 Colour Rnd(30)+1
 NPrint "A million colours on an Intuition screen"
Next B
; *** Wait for a mouse click
MouseWait

5.Input/Output

112

; *** Return to Blitz Basic 2 editor
End

5.1.5 The text cursor
The position of print output on the screen can also be important, and the LOCATE statement makes it
easy to place your information wherever you want it.

LOCATE

Mode(s): Amiga/Blitz
Statement: position the text cursor
Syntax: Locate X,Y

LOCATE positions the text cursor on the current BitMap. The X parameter specifies the horizontal
position (rounded down to a multiple of eight) and the Y parameter specifies the vertical position (not
rounded). LOCATE must follow a BITMAPOUTPUT statement. For example:

; *** A nice location
; *** Filename - Locate.bb2

BLITZ
BitMap 0,640,256,3
Slice 0,44,3+8
Show 0
BitMapOutput 0
Locate 0,0
Colour Int(Rnd(6)+1)
NPrint "Top left"
Locate 36,12
Colour 5
NPrint "Middle"
Locate 67,30
Colour Int(Rnd(6)+1)
NPrint "Bottom right"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

CURSX

Mode(s): Amiga/Blitz
Function: return the horizontal position of the text cursor
Syntax: x=CursX

5.Input/Output

113

The CURSX statement returns the current horizontal character position of the text cursor. CURSX must
follow a BITMAPOUTPUT statement. For example:

; *** CursX example
; *** Filename - CursX.bb2

BLITZ
; *** Open a Blitz mode display
BitMap 0,640,256,3
Slice 0,44,3+8
Show 0
BitMapOutput 0
For A=1 To 5
 ; *** Randomly locate cursor
 Locate Int(Rnd(60)),Int(Rnd(30))
 Colour 2
 Print ""
 ; *** Return cursor location
 X=CursX
 Locate 0,0
 Colour 4
 NPrint "X = ",X
 VWait 100
 Cls
Next A
; *** Return to Blitz Basic 2 editor
End

CURSY

Mode(s): Amiga/Blitz
Function: return the vertical position of the text cursor
Syntax: y=CursY

The CURSY statement returns the current vertical character position of the text cursor. CURSY must
follow a BITMAPOUTPUT statement. Here is an example:

; *** CursX/Y example
; *** Filename - CursY.bb2

BLITZ
; *** Open a Blitz mode display
BitMap 0,640,256,3
Slice 0,44,3+8
Show 0
BitMapOutput 0
For A=1 To 5

5.Input/Output

114

 ; *** Randomly locate cursor
 Locate Int(Rnd(60)),Int(Rnd(30))
 Colour 2
 Print "Hello"
 ; *** Return cursor location
 X=CursX
 Y=CursY
 Locate 0,0
 Colour 4
 NPrint "Hello X = ",X
 NPrint "Hello Y = ",Y
 VWait 100
 Cls
Next A
; *** Return to Blitz Basic 2 editor
End

CURSOR

Mode(s): Amiga
Statement: set the thickness of the text cursor
Syntax: Cursor THICKNESS

The CURSOR statement is used to set the thickness of the text cursor. If THICKNESS is negative then a
block cursor will be used, otherwise an underline cursor, THICKNESS pixels high will be used. Try the
following example:

; *** Cursor thickness
; *** Filename - Cursor.bb2

Screen 0,3+8,"My screen"
Window 0,0,20,320,200,$1000,"Cursors",0,1
NPrint "This is a block cursor:"
A$=Edit$(10)
Cursor 1
NPrint "This is an underlined one:"
A$=Edit$(10)
; *** Return to Blitz Basic 2 editor
End

5.2 The Keyboard
Input is a simple term which means the feeding of information into the computer where it is processed.
Such processing may be addition and subtraction of numbers or storing information such as text. On
the Amiga information can be entered using the keyboard. This section covers the commands which
can be used to read the Amiga's 96 (I counted every one of them!) key keyboard.

5.Input/Output

115

5.2.1 Reading the keyboard
BLITZKEYS

Mode(s): Blitz
Statement: toggle Blitz mode keyboard reading
Syntax: BlitzKeys On

The BLITZKEYS statement is used to toggle Blitz mode keyboard reading (note that BlitzKeys Off is no
longer supported by Blitz Basic 2). If keyboard reading is enabled then the keyboard can be read in Blitz
mode. For example:

; *** BlitzKeys example
; *** Filename - BlitzKeys.bb2

BLITZ
; *** Open a Blitz mode display
BitMap 0,320,256,3
BitMapOutput 0
Slice 0,44,3
Show 0
; *** Enable Blitz mode keyboard reading
BlitzKeys On
NPrint "Type some rubbish..."
; *** Input some text
While Joyb(0)=0
 Print Inkey$
Wend
; *** Return to Blitz Basic 2 editor
End

Note that the following commands can only work in Blitz mode if Blitz mode keyboard reading is
enabled, as in the above example.

BLITZREPEAT

Mode(s): Blitz
Statement: vary Blitz mode key repeat delays
Syntax: BlitzRepeat DELAY,SPEED

The BLITZREPEAT statement is no longer supported by Blitz Basic 2. As such there is no example.

5.Input/Output

116

INKEY$

Mode(s): Amiga/Blitz
Function: check for a key-press
Syntax: i$=Inkey$[(CHARACTERS)]

This function is used to detect the pressing of keys on the keyboard. INKEY$ requires no arguement
and is generally used to assign a character to a string variable or to test for a particular character. If no
key is being pressed, then INKEY$ returns a null string (""). Note that INKEY$ distinquishes between
capital and lower-case letters. If the optional CHARACTERS parameter is included then more than one
character (the default) may be collected. For example:

; *** Inkey$ example
; *** Filename - Inkey$.bb2

Screen 0,3+8,"Screen"
; *** Open window to output text
Window 0,0,20,320,200,$1000,"My word, another window",1,2
NPrint "Type some rubbish..."
Repeat
 ; *** Wait for a key-press
 WaitEvent
 Print Inkey$
Until Joyb(0)>0
; *** Return to Blitz Basic 2 editor
End

RAWSTATUS

Mode(s): Blitz
Function: test for a specific key-press
Syntax: k=RawStatus(RAW_CODE)

Use this function to determine whether or not a specific key is being pressed. RAW_CODE is the raw
code of the key to be tested. If the key is being pressed then a value of (-1) will be returned, otherwise
(0) will be returned. For example:

; *** RawStatus example
; *** Filename - RawStatus.bb2

BLITZ
; *** Open a Blitz mode display
BitMap 0,320,256,3
BitMapOutput 0

5.Input/Output

117

Slice 0,44,3
Show 0
; *** Enable Blitz mode keyboard reading
BlitzKeys On
While Joyb(0)=0
 Locate 0,1
 Print "Del key is : "
 ; *** Test status of DEL key
 If RawStatus(70)
 Print "down"
 Else
 Print "up "
 EndIf
Wend
; *** Return to Blitz Basic 2 editor
End

EDIT$

Mode(s): Amiga/Blitz
Function: input a text string
Syntax: e$=Edit$([DEFAULT,]CHARACTERS)

EDIT$ enables text strings to be entered during the execution of a program, with or without an input
cursor (DEFAULT). The cursor is always positioned at the last cursor position. CHARACTERS specifies the
number of characters that can be inputed with EDIT$. For example:

If the EDIT$ function follows a WINDOWINPUT command then EDIT$ will input
from and output to the current window, whereas a preceding FILEINPUT
command will cause EDIT$ to receive its input from a file.

For example:

; *** Edit$ example 1
; *** Filename - Edit$1.bb2

; *** Open an Intuition display
Screen 0,3+8,"A Screen"
Window 0,0,20,200,200,$1000,"Window",1,0
NPrint "Enter your first name..."
; *** Input some text (10 characters max)
A$=Edit$(10)
NPrint "Hello ",A$
; *** Wait for a mouse click
MouseWait

5.Input/Output

118

; *** Return to Blitz Basic 2 editor
End

; *** Edit$ example 2
; *** Filename - Edit$2.bb2

; *** Open an Intuition display
Screen 0,3+8,"Another Screen"
Window 0,0,20,200,200,$1000,"Another Window",1,0
NPrint "Enter your first name..."
; *** Input some text (with default prompt)
A$=Edit$("Default name",12)
NPrint "Hello ",A$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

EDIT

Mode(s): Amiga/Blitz
Function: input a numeric value
Syntax: e=Edit([DEFAULT,]CHARACTERS)

EDIT enables numbers to be entered during the execution of a program, with or without an input cursor
(DEFAULT). The cursor is always positioned at the last cursor position. CHARACTERS specifies the
number of characters that can be inputed with EDIT. For example:

If the EDIT function follows a WINDOWINPUT command then EDIT will input
from and output to the current window, whereas a preceding FILEINPUT
command will cause EDIT to receive its input from a file.

For example:

; *** Edit example
; *** Filename - Edit.bb2

NPrint "Enter a number:"
; *** Input a number (10 characters max)
A=Edit(10)
NPrint "Your number was ",A
; *** Wait for a mouse click
MouseWait

5.Input/Output

119

; *** Return to Blitz Basic 2 editor
End

DEFAULTINPUT

Mode(s): Amiga/Blitz
Statement: receive Edit$ input from CLI window
Syntax: DefaultInput

DEFAULTINPUT forces all future EDIT$ functions to receive input from the CLI window the program was
run from. This is the default channel used when a Blitz Basic program is first run. For example:

; *** DefaultInput example
; *** Filename - DefaultInput.bb2

; *** Open an Intuition display
Screen 0,0,100,320,200,3,0,"A Screen",1,2
Window 0,10,40,200,50,$1000,"A Window",1,2
NPrint "Enter text into window"
; *** Input some text (10 characters max)
A$=Edit$(10)
; *** Send input/output to CLI window
DefaultInput
DefaultOutput
; *** Remove window from display
CloseWindow 0
NPrint "Enter some text into CLI window"
; *** Input some more text (10 characters max)
B$=Edit$(10)
; *** Return to Blitz Basic 2 editor
End

BITMAPINPUT

Mode(s): Blitz
Statement: enable Edit & Edit$ in Blitz mode
Syntax: BitMapInput

The BIMAPINPUT statement enables the EDIT and EDIT$ functions in Blitz mode. A BLITZKEYS ON
statement must have been executed prior to BITMAPINPUT, otherwise it will not function correctly. A
BITMAPOUTPUT statement must also be executed before an EDIT or EDIT$ function. Here is an
example:

5.Input/Output

120

; *** Using Edit$ in Blitz mode
; *** Filename - BitMapInput.bb2

BLITZ
; *** Open a Blitz mode display
BitMap 0,320,256,3
Slice 0,44,3
Show 0
; *** Direct text output to BitMap
BitMapOutput 0
; *** Enable Blitz mode keyboard reading
BlitzKeys On
BitMapInput
Locate 0,2
; *** Input some text (9 characters max)
A$=Edit$("Type away",9)
; *** Return to Blitz Basic 2 editor
End

5.3 The Joystick
A joystick is, if you play games, the single most important peripheral for your Amiga. That little black
box of electrical trickery can be used to blast baddies, dodge dinosaurs and drive Diablos! Thankfully
Blitz Basic provides us with a number of exciting commands which take full control over the common or
garden joystick.

JOYR

Mode(s): Amiga/Blitz
Function: return the status of a joystick
Syntax: direction=Joyr(PORT)

The JOYR function is used to find out in which way the joystick is being waggled. If you want to take a
look at the joystick port then you must tell Blitz to investigate port (1). Or, if you want to snoop around
the mouse port (if another joystick is connected) then point Blitz towards port (0). Try the following
example which prints the status of a joystick in port 1:

; *** Joyr example
; *** Filename - Joyr.bb2

; *** Repeat until fire button is pressed
Repeat
 ; *** Output joystick status
 NPrint Joyr(1)
Until Joyb(1)<>0

5.Input/Output

121

; *** Return to Blitz Basic 2 editor
End

When you run the program, irrelevant numbers appear on the screen that change according to joystick
movement. Wouldn't it be nice if you knew what these numbers meant? Then why not take a look at
the table below (for your convenience I have also included corresponding compass bearings).

Table 5.2 : Reading the joystick port using JOYR

Bit number Joystick direction
==============================
0 Up [N]
1 Up & Right [NE]
2 Right [E]
3 Down & Right [SE]
4 Down [S]
5 Down & Left [SW]
6 Left [W]
7 Up & Left [NW]
8 No direction

JOYX

Mode(s): Amiga/Blitz
Function: return the left/right status of a joystick
Syntax: direction=Joyx(PORT)

This returns a value of (-1) if the joystick connected to the given port number has been moved to the
left. If the joystick is held to the right then this value is (1), otherwise a value of (0) is returned (meaning
the joystick is held neither left nor right). Here is an example:

; *** Joyx example
; *** Filename - Joyx.bb2

BLITZ
BitMap 0,320,256,4
; *** Create BOB
Boxf 1,1,10,10,1
GetaShape 0,0,0,11,11
Cls
Slice 0,44,4
Show 0
; *** Starting co-ordinates of BOB
X=150
Y=100
; *** BitMap storage buffer
Buffer 0,16384

5.Input/Output

122

Repeat
 VWait
 UnBuffer 0
 ; *** Test joystick and move BOB
 If Joyx(1)=-1 AND X>0 Then X-2
 If Joyx(1)=1 AND X<300 Then X+2
 BBlit 0,0,X,Y
Until Joyb(1)>0
; *** Return to Blitz Basic 2 editor
End

JOYY

Mode(s): Amiga/Blitz
Function: return the up/down status of a joystick
Syntax: direction=Joyy(PORT)

JOYY works in a similar way to JOYX. It returns a value of (-1) if the joystick connected to the given port
is held upwards, and a value of (1) if it is held downwards. Otherwise it returns a value of (0) (meaning
the joystick is held neither upwards nor downwards). For example:

; *** Joystick control
; *** Filename - Joyy.bb2

BLITZ
BitMap 0,320,256,4
; *** Create BOB
Boxf 1,1,10,10,1
GetaShape 0,0,0,11,11
Cls
Slice 0,44,4
Show 0
; *** Starting co-ordinates of BOB
X=150
Y=100
; *** BitMap storage buffer
Buffer 0,16384
Repeat
 VWait
 UnBuffer 0
 ; *** Test joystick and move BOB
 If Joyx(1)=-1 AND X>0 Then X-2
 If Joyx(1)=1 AND X<300 Then X+2
 If Joyy(1)=-1 AND Y>10 Then Y-2
 If Joyy(1)=1 AND Y<200 Then Y+2
 BBlit 0,0,X,Y
Until Joyb(1)>0

5.Input/Output

123

; *** Return to Blitz Basic 2 editor
End

JOYB

Mode(s): Amiga/Blitz
Function: return the button status of the joystick/mouse
Syntax: button=Joyb(PORT)

In order to read the status of either the joystick or mouse buttons you must use the JOYB command,
followed by the port number. A value of (1) will be returned only if the left button is held down. If the
right button is held down then a value of (2) is returned. You may also find it useful, on some occasions,
to test if both buttons are pressed (a value of (3) is returned). Finally, if no buttons are held down then
JOYB will graciously return (0). Try the following example:

; *** Joyb example
; *** Filename - Joyb.bb2

OK=1
Repeat
 VWait
 A=Joyb(0)
 If A>0
 If A=1 Then NPrint "Left mouse button"
 If A=2 Then NPrint "Right mouse button"
 If A=3
 NPrint "Both buttons"
 VWait 50
 OK=0
 EndIf
 Repeat : Until Joyb(0)=0
 EndIf
Until OK=0
; *** Return to Blitz Basic 2 editor
End

5.4 Reading the mouse status
Whereas the joystick has come to be regarded as the tool of the games player, the mouse has had a
much wider use. It has been used as a control method for games (as in Populous and Syndicate), and
more often for controlling applications (such as those involving Intuition). Blitz Basic's powerful mouse
commands can be used to create both.

5.Input/Output

124

MOUSE

Mode(s): Amiga
Statement: turn Blitz mode mouse reading on or off
Syntax: Mouse On/Off

The MOUSE statement toggles Blitz mode mouse reading. In order for the following functions to work
in Blitz mode, mouse reading must have been previously enabled:

; *** Mouse example
; *** Filename - Mouse.bb2

BLITZ
BitMap 0,320,256,2
BitMapOutput 0
Slice 0,44,2
Show 0
Boxf 0,0,10,10,1
GetaShape 0,0,0,10,10
GetaSprite 0,0
Mouse On
Pointer 0,0
While Joyb(0)=0
 VWait
 Locate 0,0
 NPrint "X = ",MouseX," "
 NPrint "Y = ",MouseY," "
Wend
; *** Return to Blitz Basic 2 editor
End

MOUSEX

Mode(s): Blitz
Function: return the current horizontal location of the mouse pointer
Syntax: x=MouseX

MOUSEX is a Blitz mode command whose purpose is to find the current horizontal location of the
mouse pointer. Blitz mode mouse reading must have been previously enabled using MOUSE ON. For
example:

5.Input/Output

125

; *** Mouse coordinates
; *** Filename - MouseX.bb2

BLITZ
BitMap 0,320,256,1
Slice 0,44,1
Show 0
BitMapOutput 0
Mouse On
MouseArea 0,0,320,256
Repeat
 Locate 0,0 : Print "X coord: ",MouseX," "
 Locate 0,1 : Print "Y coord: ",MouseY," "
 VWait
Until Joyb(0)>0
; *** Return to Blitz Basic 2 editor
End

MOUSEY

Mode(s): Blitz
Function: return the current vertical location of the mouse pointer
Syntax: y=MouseY

MOUSEY is the vertical equivalent of MOUSEX in that it returns the current vertical location of the
mouse pointer. Blitz mode mouse reading must have been previously enabled using MOUSE ON. See
above example.

MOUSEXSPEED

Mode(s): Blitz
Function: return the current horizontal direction of mouse movement
Syntax: xdirection=MouseXSpeed

MOUSEXSPEED is one of those blindingly obvious commands, whose function is to find the current
horizontal speed of mouse movement. Again, Blitz mode mouse reading must have been previously
enabled using MOUSE ON. If a negative value is returned, then the mouse has been moved leftwards.
Conversely, positive values mean that the mouse has been moved rightwards. Here is an example:

; *** Mouse speed
; *** Filename - MouseXSpeed.bb2

BLITZ
BitMap 0,320,256,1

5.Input/Output

126

Slice 0,44,1
Show 0
BitMapOutput 0
Mouse On
MouseArea 0,0,320,256
Repeat
 Locate 0,0:Print "X speed: ",MouseXSpeed," "
 Locate 0,1:Print "Y speed: ",MouseYSpeed," "
 VWait 5
Until Joyb(0)>0
; *** Return to Blitz Basic 2 editor
End

Note that MOUSEXSPEED should only be used after the execution of VWAIT, or during a vertical blank
interrupt (#5).

MOUSEYSPEED

Mode(s): Blitz
Function: return the current vertical direction of mouse movement
Syntax: ydirection=MouseYSpeed

If Blitz mode mouse reading has been enabled, MOUSEYSPEED can be used to return the current
vertical speed of mouse movement. If a negative value is returned, then the mouse has been moved
upwards. If a positive value is returned, the mouse has been moved downwards. See previous example.

MOUSEWAIT

Mode(s): Amiga/Blitz
Statement: wait for click of left mouse button
Syntax: MouseWait

MOUSEWAIT halts program flow until the left mouse button is clicked. This is often useful in Blitz Basic
to prevent a program from terminating too quickly and returning you to the editor. Try the following
example:

; *** Waiting room
; *** Filename - MouseWait.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
BitMapOutput 0
NPrint "Game Over - Press left mouse button"
; *** Wait for a mouse click
MouseWait

5.Input/Output

127

; *** Return to Blitz Basic 2 editor
End

MOUSEWAIT should normally only be used ofor program testing purposes as it severely slows down
multi-tasking.

5.4.1 The mouse pointer
If, like me, you hate WIMP (Windows, Icons, Menus and Pointers to the boffins) then you'll be glad to
know that you can change the shape of the pointer. The Amiga's mouse pointer is boring. Sorry to
offend any hardened pointer-spotters, but a red white and black arrow is hardly indicative of the
Amiga's graphical prowess. How about a splash of real colour?

POINTER

Mode(s): Blitz
Statement: attach a sprite to the mouse pointer
Syntax: Pointer SPRITE#,CHANNEL

The POINTER command can be used to dress the mouse pointer in Sunday best. In theory, to change
the shape of the pointer arrow, you use the POINTER command followed by the sprite and channel
numbers. However, in practise you must execute the following sequence:

1. Load a suitable sprite
2. Create a Slice
3. Execute MOUSE On
4. Execute POINTER

For example:

; *** Point me in the right...
; *** Filename - Pointer.bb2

LoadShape 0,"pointer_sprite"
LoadPalette 0,"pointer_sprite",16
GetaSprite 0,0
BLITZ
Bitmap 0,320,DispHeight,4
Slice 0,44,4
Use Palette 0
Show 0
Mouse On
Pointer 0,0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

5.Input/Output

128

For more information on sprites and their use, please consult Chapter 8.

MOUSEAREA

Mode(s): Blitz
Statement: limit mouse pointer to part of the display
Syntax: MouseArea X1,Y1,X2,Y2

MOUSEAREA is one of those cunning commands whose use is best described by an analogy. Imagine if
you would, a little mouse (the fury kind) running freely about the house. MOUSEAREA is rather like a
cage, which keeps the mouse from roaming freely. The command creates a rectangular area in which
the mouse pointer can move, but cannot move out of. For example:

; *** MouseArea example1
; *** Filename - MouseArea1.bb2

MouseArea 10,10,100,100
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

If you need to free the mouse from its cage then simply increase the size of its play area:

; *** MouseArea example2
; *** Filename - MouseArea.bb2

MouseArea 0,0,320,200 ; *** This is the default area
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

Who needs cats?

5.5 File access
This section will teach you about all aspects of file access. Note that none of these commands are
available in Blitz mode.

5.5.1 File requesters
File requesters are used to select files from within simple and complex disk structures (ie. directories
and sub-directories).

5.Input/Output

129

FILEREQUEST$

Mode(s): Amiga
Function: open a file requester
Syntax: f$=FileRequest$("TITLE","PATHNAME","FILENAME")

The FILEREQUEST$ function opens a standard Amiga-style file requester on the currently used screen.
Program flow will halt until the user either selects a file, or hits the requester's "CANCEL" button. If a file
was selected, FILEREQUEST$ will return the full name as a string. If "CANCEL" was selected then a null
string ("") is returned.

The TITLE$ parameter may be any text string to be used as a title for the file requester. PATHNAME is a
string with a maximum length of at least 160. FILENAME is a string with a maximum length of at least
64. The PATHNAME and FILENAME parameters must be set with the MAXLEN statement before a file
requester is opened. Try the following example:

; *** FileRequest$ example
; *** Filename - FileRequest$.bb2

Screen 0,3+8
ScreensBitMap 0,0
BitMapOutput 0
; *** Maximum length of path and filename
MaxLen PATH$=160
MaxLen FILENAME$=64
; *** Create file requester
A$=FileRequest$("Select a file",PATH$,FILENAME$)
Locate 0,5
; *** Output selected file
NPrint A$
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

5.5.2 Opening a file
OPENFILE

Mode(s): Amiga
Function: open a file
Syntax: o=OpenFile(FILE#,"FILENAME")

OPENFILE is used to open both sequential and random access files. If the file is successfully opened
then OPENFILE returns (-1), otherwise (0) is returned. OPENFILE can be used to both read from and

5.Input/Output

130

write to files. If "FILENAME" does not exist then it will be created by OPENFILE. For example:

; *** OpenFile example
; *** Filename - OpenFile.bb2

; *** Save file to RAM disk
If OpenFile(0,"RAM:FILE")
 MaxLen ASTRING$=32
 Fields 0,ANUMBER,ASTRING$
 ANUMBER=Int(Rnd(10)+1)
 ASTRING$="Blitz Basic"
 Put 0,0
 CloseFile 0
 ; *** Read file back into memory
 If OpenFile(0,"RAM:FILE")
 Fields 0,ANUMBER,ASTRING$
 ANUMBER=0
 ASTRING$=""
 Get 0,0
 NPrint ANUMBER
 NPrint ASTRING$
 CloseFile 0
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 EndIf
EndIf

5.5.3 Examining files
LOF

Mode(s): Amiga
Function: return the length of a file
Syntax: l=Lof(FILE#)

The LOF function delivers the length of a file in bytes. FILE# is the channel number of the file the
function will access. The LOF function can only be used with a file that has previously been opened with
OPENFILE. For example:

; *** Lof example
; *** Filename - Lof.bb2

If OpenFile(0,"RAM:FILE")
 MaxLen ASTRING$=32
 Fields 0,ASTRING$

5.Input/Output

131

 ASTRING$="Douglas"
 Put 0,0
 NPrint Lof(0)," bytes"
 CloseFile 0
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
EndIf

EXISTS

Mode(s): Amiga
Function: return the length of a file if it exists
Syntax: e=Exists("FILENAME")

This function returns the length of a file. If the file specified in the "FILENAME" parameter does not exist,
or a disk is not present in the specified drive, then (0) is returned. For example:

; *** Exists example
; *** Filename - Exists.bb2

Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0
Locate 0,3
; *** Is Blitz Basic in DF0?
If Exists("DF0:Blitz2")
 NPrint "File exists!"
Else
 NPrint "File does not exist!"
EndIf
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

EOF

Mode(s): Amiga
Function: read the end status of a file
Syntax: e=Eof(FILE#)

The EOF function reads the file data pointer and returns the following values depending on if it has
reached the end of the specified file or not. The LOF function can only be used with a file that has

5.Input/Output

132

previously been opened with OPENFILE:

Table 5.3 : Values returned by EOF

End of file? Return
====================
True -1
False 0

For example:

; *** Eof example
; *** Filename - Eof.bb2

If WriteFile (0,"RAM:A FILE")
 ; *** Create file to read
 FileOutput 0
 Print "This is a Blitz Basic file"
 CloseFile 0
 DefaultOutput
 If ReadFile (0,"RAM:A FILE")
 FileInput 0
 ; *** Read file until end is reached
 While Eof(0)=0
 VWait
 Print Inkey$
 Wend
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 EndIf
EndIf

LOC

Mode(s): Amiga
Function: return position in a file
Syntax: l=Loc(FILE#)

LOC returns the current position of the data pointer in a file. When a file is first opened, the data pointer
is located at position (0). For example:

5.Input/Output

133

; *** Loc example
; *** Filename - Loc.bb2

If WriteFile (0,"RAM:TESTER")
 ; *** Create file
 FileOutput 0
 Print "Hello from Blitz Basic 2!"
 CloseFile 0
 DefaultOutput
 ; *** Read file
 If ReadFile (0,"RAM:TESTER")
 FileInput 0
 NPrint Edit$(40)
 Print "File length = ",Loc(0)," characters"
 CloseFile 0
 DefaultInput
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 EndIf
EndIf

5.5.4 Deleting files
KILLFILE

Mode(s): Amiga
Statement: delete a file
Syntax: KillFile "FILENAME"

KILLFILE is a rather sinister-sounding command whose purpose is to erase a file from disk. Do be
warned that any killed file cannot be replaced, so only kill unimportant data! Here is an example:

; *** KillFile example
; *** Filename - KillFile.bb2

If WriteFile (0,"RAM:KILLER")
 ; *** Create file
 FileOutput 0
 Print "I will not exist!"
 CloseFile 0
 DefaultOutput
 ; *** Delete file
 KillFile "RAM:KILLER"
EndIf

5.Input/Output

134

; *** Return to Blitz Basic 2 editor
End

5.5.5 Sequential files
Sequential files are those that allow you to read the contents of a file only in the order in which it was
originally created. To alter the contents of a sequential file you have to load the entire file into memory,
alter the information, and save the whole file back to disk.

READFILE

Mode(s): Amiga
Function: open an existing file for sequential reading
Syntax: r=ReadFile(FILE#,"FILENAME")

The READFILE statement opens an already existing file, specified by "FILENAME", for sequential reading.
If the file was successfully opened then (-1) is returned, otherwise (0) is returned. For example:

; *** ReadFile example
; *** Filename - ReadFile.bb2

If WriteFile (0,"RAM:A FILE")
 ; *** Create file
 FileOutput 0
 Print "Hello from Blitz Basic!"
 CloseFile 0
 DefaultOutput
 ; *** Read file
 If ReadFile (0,"RAM:A FILE")
 FileInput 0
 NPrint Edit$(40)
 CloseFile 0
 DefaultInput
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 EndIf
EndIf

WRITEFILE

Mode(s): Amiga
Function: create a new file for sequential writing
Syntax: w=WriteFile(FILE#,"FILENAME")

5.Input/Output

135

The WRITEFILE statement creates a new file, specified by "FILENAME", for the purpose of sequential file
writing. If the file was successfully opened then (-1) is returned, otherwise (0) is returned. For example:

; *** WriteFile example
; *** Filename - WriteFile.bb2

If WriteFile (0,"RAM:FILE")
 ; *** Create file
 FileOutput 0
 Print "WriteFile example"
 CloseFile 0
 DefaultOutput
 ; *** Read file
 If ReadFile (0,"RAM:FILE")
 FileInput 0
 NPrint Edit$(40)
 CloseFile 0
 DefaultInput
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 EndIf
EndIf

FILEOUTPUT

Mode(s): Amiga/Blitz
Statement: cause print commands to output to sequential file
Syntax: FileOutput FILE#

FILEOUTPUT is used to send all future print commands to the specified sequential file (FILE#). Upon file
closure, printing should be directed to another output channel.

FILEINPUT

Mode(s): Amiga/Blitz
Statement: cause input commands to receive from sequential file
Syntax: FileInput FILE#

FILEINPUT is used to cause all future input commands to receive from the specified sequential file
(FILE#). Upon file closure, input should be directed to another input channel.

Here is an example which demonstrates the use of FILEINPUT and FILEOUTPUT:

5.Input/Output

136

; *** FileOutput/Input example
; *** Filename - FileOutput.bb2

If WriteFile (0,"RAM:INOUT")
 FileOutput 0
 Print "A load of rubbish!"
 CloseFile 0
 DefaultOutput
 If ReadFile (0,"RAM:INOUT")
 FileInput 0
 NPrint Edit$(40)
 CloseFile 0
 DefaultInput
 ; *** Wait for a mouse click
 MouseWait
 ; *** Return to Blitz Basic 2 editor
 End
 EndIf
EndIf

FILESEEK

Mode(s): Amiga
Statement: move to a point in the specified file
Syntax: FileSeek FILE#,POSITION

The FILESEEK statement can be used to moves to a particular point in the specified file (FILE#). The
POSITION parameter must be less than the length of the file. For example:

; *** FileSeek example
; *** Filename - FileSeek.bb2

If WriteFile (0,"RAM:FILE")
 ; *** Create file
 FileOutput 0
 Print "The best BASIC is Blitz "
 CloseFile 0
 If OpenFile (0,"RAM:FILE")
 ; *** Search for end of file
 FileSeek 0,Lof(0)
 ; *** Add word to file
 NPrint "Basic!"
 CloseFile 0
 DefaultOutput
 ; *** Read new file
 If ReadFile (0,"RAM:FILE")
 FileInput 0

5.Input/Output

137

 NPrint Edit$(80)
 ; *** Wait for a mouse click
 MouseWait
 EndIf
 EndIf
EndIf
; *** Return to Blitz Basic 2 editor
End

CLOSEFILE

Mode(s): Amiga
Statement: close a file
Syntax: CloseFile FILE#

CLOSEFILE closes the file specified by FILE#. try the following example:

; *** CloseFile example
; *** Filename - CloseFile.bb2

If WriteFile (0,"RAM:FILEOFAX")
 FileOutput 0
 Print "A closed case"
 CloseFile 0
EndIf
; *** Return to Blitz Basic 2 editor
End

5.5.6 Random access files
The most obvious difference between a random access file and a sequential file is in the access method.
With a sequential file the entire file must be loaded into memory in order to access one field. In a
random access file, however, one record can be read into memory without having to read in the entire
file. The disadvantage of random access files is that a larger file area is required on disk.

FIELDS

Mode(s): Amiga/Blitz
Statement: set-up fields of a random access file record
Syntax: Fields FILE#,VAR1[,VAR2...]

The FIELDS statement is used to set-up the fields of a random access file record. The numeric
expression FILE# is the number of the data channel of a data file previously opened with OPENFILE. The
VAR parameters specify a list of variables that can be read from or written to the file.

5.Input/Output

138

Any string variables in this list must have been initialised to contain a maximum number of characters
using the MAXLEN statement.

PUT

Mode(s): Amiga
Statement: Write a specific record to a random access file.
Syntax: Put FILE#,RECORD

PUT writes a specific record to a random access file.

GET

Mode(s): Amiga
Statement: Read a specific record from a random access file
Syntax: Get FILE#,RECORD

GET reads a specific record from a random access file.

The following example demonstrates the use of the FIELDS, GET, and PUT statements in the creation of
random access files:

; *** Random access file example ; *** Filename - Random_Access.bb2

If OpenFile (0,"RAM:TEST")
 ; *** Maximum length of string field
 MaxLen B$=32
 ; *** Define fields
 Fields 0,A,B$
 ; *** Field contents
 A=17
 B$="Blitz Basic"
 Put 0,0
 CloseFile 0
 ; *** Read file
 If OpenFile (0,"RAM:TEST")
 ; *** Define fields
 Fields 0,A,B$
 ; *** Initialise variables (not necessary)
 A=0
 B$=""
 ; *** Grab variables from file
 Get 0,0
 NPrint "A = ",A
 NPrint "B$ = ",B$
 CloseFile 0
 ; *** Wait for a mouse click

5.Input/Output

139

 MouseWait
 EndIf
EndIf
; *** Return to Blitz Basic 2 editor
End

5.5.7 Advanced file access
The following commands are primarily of use to the advanced Blitz Basic programmer. If you don't
know what you're doing, then hands off!

DOSBUFFLEN

Mode(s): Amiga/Blitz
Statement: set file buffer
Syntax: DosBuffLen BYTES

The DOSBUFFLEN statement controls the Blitz Basic file handling buffer. Initially, each file is allocated a
2048 byte buffer, however this may be decreased if memory is tight. For example:

; *** DosBuffLen example
; *** Filename - DosBuffLen.bb2

DosBuffLen 2000
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

CATCHDOSERRORS

Mode(s): Amiga/Blitz
Statement: force DOS errors to report on a Blitz window
Syntax: CatchDosErrors

CATCHDOSERRORS is used to force AmigaDOS I/O errors into opening on a Blitz Basic window, as
opposed to the Workbench screen. Try the following example:

; *** CatchDosErrs example
; *** Filename - CatchDosErrs.bb2

Screen 0,3
Window 0,0,12,320,DispHeight-12,$1008,"Window",1,2
; *** Send errors to window

5.Input/Output

140

CatchDosErrs
; *** Try reading file
If ReadFile (0,"DF0:GARBAGE")
Else
 Print "Can't open file"
EndIf
Repeat
Until WaitEvent=$200
; *** Return to Blitz Basic 2 editor
End

READMEM

Mode(s): Amiga
Statement: read a number of bytes into an absolute memory location
Syntax: ReadMem FILE#,ADDRESS,LENGTH

The READMEM statement reads a number of bytes, determined by the LENGTH parameter, into an
absolute memory location, specified by the ADDRESS parameter, from a file. FILE# is the number of a
file already opened with OPENFILE.

WRITEMEM

Mode(s): Amiga
Statement: write a number of bytes from an absolute memory location
Syntax: WriteMem FILE#,ADDRESS,LENGTH

The WRITEMEM statement writes a number of bytes, determined by the LENGTH parameter, from an
absolute memory location, specified by the ADDRESS parameter, to a file. FILE# is the number of a file
already opened with OPENFILE.

5.6 End-of-Chapter summary
Text can be printed onto the screen using PRINT and NPRINT. NPRINT automatically outputs a newline
character.

The text style can be altered using LOADBLITZFONT. LOADBLITZFONT can only be used with eight-by-
eight non-proportional fonts.

The COLOUR statement is used to alter the colour used to render text to BitMaps.

LOCATE can be used to position the text cursor.

The CURSOR statement is used to alter the appearance of the text cursor.

Blitz Basic provides full control over the Amiga keyboard. The keyboard must be correctly enabled to be
read in Blitz mode.

5.Input/Output

141

The appearance of the mouse pointer can be changed with POINTER. Blitz Basic also provides full
control over standard nine pin joysticks.

There are two types of file access: sequential and random access. With sequential files the entire file
must be loaded into memory in order to access one field. In random access files, however, one record
can be read into memory without having to read in the entire file.

5.Input/Output

142

Chapter 6 : BitMaps and Slices
This chapter explains how BitMaps and Slices are created and manipulated. It will also show you how to
create smooth-scrolling and dual-playfield displays.

6.1 Creating a BitMap
BitMap objects, or BitMaps, are used for the rendering of graphics. Nearly all of the Blitz Basic 2 graphic
commands require a BitMap to output onto, with the notable exceptions being the window and sprite
commands (more on those later).

BitMaps can either be created from scratch by the BITMAP statement, or borrowed from a convenient
screen using SCREENSBITMAP.

BITMAP

Mode(s): Amiga/Blitz
Statement: open a new BitMap
Syntax: BitMap BITMAP#,WIDTH,HEIGHT,BITPLANES

This statement creates and initializes a BitMap (BITMAP#). The WIDTH and HEIGHT parameters specify
the dimensions of the BitMap in pixels. The BITPLANES parameter is the number of bitplanes associated
with the BitMap. The value you specify (ranging from one to six) determines the number of colours that
can be displayed on the BitMap, as shown in the following table:

Table 6.1 : Number of colours per bitplane

Bitplanes Colours
==================
1 2
2 4
3 8
4 16
5 32
6 64

Here are some examples:

; *** BitMap example
; *** Filename - BitMap.bb2

BLITZ
BitMap 0,320,256,1 ; *** 2 colour BitMap
Slice 0,44,1
Show 0

143

; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** BitMap example 2
; *** Filename - BitMap2.bb2

BLITZ
BitMap 0,640,256,5 ; *** Double-width 32 colour BitMap
Slice 0,44,5
Show 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** BitMap example 3
; *** Filename - BitMap3.bb2

BLITZ
BitMap 0,320,256,3 ; *** 8 colour BitMap
BitMapOutput 0
Slice 0,44,3
Show 0
Locate 15,10
NPrint "A BitMap"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

6.1.2 Manipulating BitMaps
USE BITMAP

Mode(s): Amiga/Blitz
Statement: set current BitMap
Syntax: Use BitMap BITMAP#

USE BITMAP is used to set a specified BitMap as the current BitMap. For example:

6.Bitmaps and Slices

144

; *** Use BitMap example
; *** Filename - Use BitMap.bb2

BitMap 0,320,256,3
For A=1 To 100
 Plot Rnd(320),Rnd(256),Rnd(6)+1
Next A
BitMap 1,320,256,3
BLITZ
Slice 0,44,3
For A=1 To 10
 Show MAP : MAP=1-MAP: Use BitMap MAP
VWait 30
Next A
; *** Return to Blitz Basic 2 editor
End

FREE BITMAP

Mode(s): Amiga/Blitz
Statement: erase a BitMap
Syntax: Free BitMap BITMAP#

The FREE BITMAP statement closes a BitMap and frees any memory occupied it. For example:

; *** Free BitMap example
; *** Filename - Free BitMap.bb2

BitMap 0,320,256,3
For A=1 To 100
 Circle Rnd(320),Rnd(256),Rnd(10)+2,Rnd(6)+1
Next A
BLITZ
Slice 0,44,3
Show 0
VWait 100
Free BitMap 0
; *** Return to Blitz Basic 2 editor
End

6.Bitmaps and Slices

145

COPYBITMAP

Mode(s): Amiga/Blitz
Statement: clone a BitMap
Syntax: CopyBitMap SOURCE,DESTINATION

This statement makes a carbon copy of a BitMap. SOURCE is the number of the BitMap to clone and
DESTINATION is the number of the destination BitMap. Try the following example:

; *** CopyBitMap example
; *** Filename - CopyBitMap.bb2

BitMap 1,320,256,3
BitMap 0,320,256,3
BitMapOutput 0
BLITZ
Slice 0,44,3
Show 0
For A=1 To 100
 Locate Rnd(25)+3,Rnd(25)
 Colour Rnd(6)+1
 Print "Game Over"
VWait
Next A
CopyBitMap 0,1
VWait 20
Cls 0
VWait 50
Use BitMap 1
Show 1
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SCREENSBITMAP

Mode(s): Amiga/Blitz
Statement: attach a BitMap to an intuition screen
Syntax: ScreensBitMap SCREEN#,BITMAP#

Blitz Basic also allows the user to "attach" a BitMap to an Intuition Screen. BitMaps are automatically
created when these Screens are opened. For example:

6.Bitmaps and Slices

146

; *** ScreensBitMap example
; *** Filename - ScreensBitMap.bb2

BitMap 0,320,256,3
PalRGB 0,0,0,0,0
Screen 0,3,"Stardom"
ScreensBitMap 0,0
Use Palette 0
For A=1 To 100
 Plot Rnd(320),Rnd(200)+30,Rnd(6)+1
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SCROLL

Mode(s): Amiga/Blitz
Statement: move a portion of a BitMap
Syntax: Scroll X1,Y1,WIDTH,HEIGHT,X2,Y2[,BITMAP#]

This statement allows you to move, or scroll, a rectangular portion of a BitMap. X1 and Y1 are the co-
ordinates of the upper left-hand corner of the rectangle and WIDTH and HEIGHT specify its size. The X2
and Y2 parameters are the destination co-ordinates. If the optional BITMAP# parameter is included
then the rectangle is taken from this BitMap instead, and copied to the current BitMap. Here's an
example:

; *** Scroll example
; *** Filename - Scroll.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
For A=1 To 50
 Circlef Rnd(320),Rnd(100),Rnd(20)+10,Rnd(5)+1
Next A
Scroll 0,0,320,100,0,140
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

6.Bitmaps and Slices

147

REMAP

Mode(s): Amiga/Blitz
Statement: change pixels of one colour to another colour
Syntax: ReMap COLOUR1#,COLOUR2#[,BITMAP#]

The REMAP statement can change pixels of one colour on a BitMap to another colour. COLOUR1#
specifies the colour to change and COLOUR2# is the number of the new colour. If the optional BITMAP#
parameter is included then the a BitMap other than the current BitMap may be used. Try the following
example:

; *** ReMap example
; *** Filename - ReMap.bb2

BLITZ
BitMap 0,320,256,5
Slice 0,44,5
Show 0
; *** Plot a boring white starfield
For COLS=1 To 14
 RGB COLS,15,15,15
Next COLS
For A=0 To 300
 Plot Rnd(320),Rnd(256),Rnd(14)+1
Next A
MouseWait
; *** Add a splash of colour
For B=1 To 14
 ReMap B,B+8
Next B
Repeat : Until Joyb(0)=0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

BITPLANESBITMAP

Mode(s): Amiga/Blitz
Statement: create new BitMap with bitplanes from old BitMap
Syntax: BitPlanesBitMap SOURCE,DESTINATION,BITPLANES

This statement is used to create a "dummy" BitMap (DESTINATION) from the source BitMap (SOURCE),
with only the bitplanes specified by the BITPLANES parameter. This is useful for increasing blitting
speed because of the fewer bitplanes involved.

6.Bitmaps and Slices

148

Table 6.2 : The BITPLANES parameter

Bitplane Flag
==============
1 $01
2 $02
3 $04
4 $08
5 $10
6 $20
7 $40
8 $80

Flags can be combined with the logical (|) operator.

The BITPLANESBITMAP statement can also be used to create special effects, such as shadows. This
example was created by Tim Caldwell:

; *** BitPlanesBitMap example
; *** Filename - BitPlanesBitMap.bb2

BLITZ
BitMap 0,320,256,5
BitMapOutput 0
; *** Create dummy BitMap (bitplane 5)
BitPlanesBitMap 0,1,$10
Slice 0,44,5
Show 0
X=80 : Y=48 : W=160 : H=160
Use BitMap 0
; *** Draw BitMap graphics
For COL=0 To 15
 R=QLimit(Red(COL)-5,0,15)
 G=QLimit(Green(COL)-5,0,15)
 B=QLimit(Blue(COL)-5,0,15)
 RGB COL+16,R,G,B
 Boxf X,Y,X+W,Y+H,COL
 X+4 : Y+4 : W-8 : H-8
Next COL
X=120 : Y=88 : W=80 : H=80
; *** Use dummy BitMap
Use BitMap 1
While Joyb(1)=0
 ; *** Use joystick to move shadow
 JX=Joyx(1) : JY=Joyy(1)
 If JX OR JY=True
 Cls
 X=QLimit(X+JX,0,320-W)
 Y=QLimit(Y+JY,0,256-H)
 EndIf

6.Bitmaps and Slices

149

 ; *** Draw shadow
 Boxf X,Y,X+W,Y+H,1
 VWait
Wend
; *** Return to Blitz Basic 2 editor
End

6.1.3 Loading and saving BitMaps
LOADBITMAP

Mode(s): Amiga
Statement: load an IFF screen from disk
Syntax: LoadBitMap BITMAP#,"FILENAME"[,PALETTE#]

The lOADBITMAP statement loads an IFF picture (such as a DPaint file) into a previously opened BitMap.
If the optional PALETTE parameter is included then the picture's palette may be loaded into a palette
object. Here is an example:

; *** LoadBitMap example
; *** Filename - LoadBitMap.bb2

BitMap 0,320,256,5
LoadBitMap 0,"FILENAME.IFF",0
BLITZ
Slice 0,44,5
Show 0
Use Palette 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SAVEBITMAP

Mode(s): Amiga
Statement: save an IFF screen to disk
Syntax: SaveBitMap BITMAP#,"FILENAME"[,PALETTE#]

SAVEBITMAP saves a BitMap to disk as an IFF file. If the optional PALETTE# parameter is included then
the picture's palette may be saved to disk as well:

6.Bitmaps and Slices

150

; *** SaveBitMap example
; *** Filename - SaveBitMap.bb2

BitMap 0,320,256,5
; *** Draw a nice random picture
For A=1 To 100
 Circlef Rnd(320),Rnd(256),Rnd(10)+5,Rnd(10)+5,Rnd(6)+1
Next A
BLITZ
Slice 0,44,5
Show 0
; *** Pop into Amiga mode and save BitMap
QAMIGA
SaveBitMap 0,"df0:Elipse.IFF"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

6.1.4 Display synchronisation
The computer display is updated fifty times every second on PAL systems, and sixty times a second on
NTSC systems. Here, the display is created by an electron beam which scans across every line of the
screen until it reaches the bottom right-hand corner, where it jumps back to the top of the screen
again. The period between the completion of one display cycle and the next is known as the "vertical
blank period".

Because some Blitz commands work faster than others, it is often useful to wait for the next vertical
blank period before executing them, so as to achieve perfect display synchronisation. This is where the
VWAIT statement comes in.

VWAIT

Mode(s): Amiga/Blitz
Statement: wait for next vertical blank period
Syntax: VWait [FRAMES]

This statement waits for the next vertical blank period and is used to achieve perfect display
synchronisation. The optional FRAMES parameter may be used to specify a particular number of vertical
blanks (the default is one). Try the following example which illustrates the use of VWAIT:

6.Bitmaps and Slices

151

; *** VWait example
; *** Filename - VWait.bb2

; *** Pop onto Blitz mode
BLITZ
; *** Create a Blitz mode display
BitMap 0,320,256,3
Slice 0,44,3
Show 0
; *** Create a shape
Boxf 10,10,50,50,5
GetaShape 0,10,10,50,50
Cls
; *** Initialize BBLIT buffer
Buffer 0,16384
; *** Flickery animation
For X=1 To 250
 UnBuffer 0
 BBlit 0,0,X,50
Next X
VWait 50
; *** No flicker!
For X2=1 To 250
 VWait
 UnBuffer 0
 BBlit 0,0,X2,50
Next X2
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

VPOS

Mode(s): Amiga/Blitz
Function: return the video beam's vertical position
Syntax: v=VPos

VPOS returns the video beam's vertical position. This is primarily of use in high-speed animations where
screen update needs to by syncronised to a certain video beam position (not the top of the frame as
with VWAIT). However, it can also be used as a high-speed random number generator, as in the
following example:

6.Bitmaps and Slices

152

; *** VPos example ** Filename - VPos.bb2
; *** Loop 20 times
For A=1 To 20
 ; *** Return video beam position
 RANDOM=VPos
 ; *** Output returned value
 NPrint RANDOM
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

6.2 Defining a Slice
Slices are Blitz mode screens. However, unlike screens, Slices can be used to create dual-playfield
displays (more on these later), smooth scrolling, double buffering and more!

A Slice description includes information on display mode, palette and sprite and bitplane details.

A Slice's x co-ordinate is calculated in a way which causes the Slice to be horizontally centred based on
its width.

More than one Slice may be set up at a time, allowing different areas of the display to take on different
properties:

The SHOW statement is used to display a BitMap in a Slice.

There are limits placed upon how multiple Slices may be arranged. Multiple Slices must be positioned
vertically on top of each other, with a gap of two horizontal lines between each Slice. Slices must not
overlap or be positioned together on the x-axis.

SLICE

Mode(s): Amiga/Blitz
Statement: create a Slice object
Syntax: Slice SLICE#,Y,FLAGS1
Syntax 2: Slice SLICE#,Y,W,H,FLAGS2,D,S,COLS,WIDTH1,WIDTH2

6.2.1 Syntax 1
The Slice statement is used to define a Slice object. SLICE# is the number of the Slice to be defined. The
Y parameter specifies the vertical location of the top of the Slice, ranging from 44 to the bottom of the
current display. In other words, a value of 44 displays the Slice at the very top of a display.

6.Bitmaps and Slices

153

In the first syntax, FLAGS1 refers to the number of bitplanes to be shown in the Slice, from one (a
maximum of two colours) to six (a maximum of 64 colours). This syntax automatically creates a low-
resolution Slice, however by adding eight to the FLAGS1 parameter this may be changed to a high-
resolution Slice.

Table 6.3 : The FLAGS1 parameter

FLAGS1 Resolution Width Bitplanes Colours
===
1 Low 320 1 2
2 Low 320 2 4
3 Low 320 3 8
4 Low 320 4 16
5 Low 320 5 32
6 Low 320 6 64 (Half-Brite)
9 High 640 1 2
10 High 640 2 4
11 High 640 3 8
12 High 640 4 16

Note that the height of a Slice set up with the first syntax will be 256 pixels on a PAL Amiga, or 200
pixels on an NTSC Amiga.

Here are some examples:

; *** Slice example ** Filename - Slice1.bb2

BitMap 0,320,256,9
BLITZ
Slice 0,44,1 ; *** 2 colour hi-res Slice
Show 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Slice example 2 ** Filename - Slice2.bb2

BitMap 0,320,256,5
BLITZ
Slice 0,44,5 ; *** 32 colour low-res Slice
Show 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

6.Bitmaps and Slices

154

6.2.2 Syntax 2
W and H specify the width and height (in pixels) of the Slice. D, or DEPTH, is the number of bitplanes to
be shown in the Slice. The S parameter specifies the number of available sprite channels. Each Slice can
have up to eight sprite channels.

The WIDTH1 and WIDTH2 parameters specify the width, in pixels, of any BitMaps to be shown in the
Slice. If a dual-playfield Slice is created then WIDTH1 refers to the width of the foreground BitMap and
WIDTH2 refers to the background BitMap. Otherwise, both WIDTH1 and WIDTH2 should be set the
same. These parameters allow you to display super-BitMaps (those larger than the physical display).

The FLAGS2 parameter is used to customise the Slice to your every requirements.

Table 6.4 : The FLAGS2 parameter

FLAGS2 Slice Maximum bitplanes
==
$fff8 Low-resolution 6
$fff9 High-resolution 4
$fffa Low-resolution, dual-playfield 6
$fffb High-resolution, dual-playfield 4
$fffc HAM-mode 6

Here are some examples:

; *** Slice example 3
; *** Filename - Slice3.bb2

BitMap 0,320,256,3
BLITZ
; *** 8 colour low-res Slice
Slice 0,44,320,256,$fff8,3,8,8,320,320
Show 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Slice example 4
; *** Filename - Slice4.bb2

BitMap 0,320,256,1
BLITZ
; *** 2 colour hi-res Slice
Slice 0,44,320,256,$fff9,1,8,2,320,320
Show 0
BitMapOutput 0
Print "Hello"

6.Bitmaps and Slices

155

; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

6.2.3 Manipulating Slices
USE SLICE

Mode(s): Amiga/Blitz
Statement: set current Slice
Syntax: Use Slice SLICE#

USE SLICE is used to set the currently used Slice. This allows you to direct all Slice manipulating
commands to the specified Slice number:

; *** Use Slice example
; *** Filename - Use Slice.bb2

Use Slice 1
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

FREESLICES

Mode(s): Amiga/Blitz
Statement: erase all Slices in use
Syntax: FreeSlices

Use the FREESLICES command to free all Slices currently in use. For example:

; *** FreeSlices example
; *** Filename - FreeSlices.bb2

; *** Open a BitMap
BitMap 0,320,256,3
; *** Create some BitMap graphics
For A=1 To 100
 Circlef Rnd(320),Rnd(256),Rnd(10)+2,Rnd(6)+1
Next A
; *** Pop into Blitz mode
BLITZ

6.Bitmaps and Slices

156

; *** Create a slice
Slice 0,44,320,256,$fff8,3,8,8,320,320
; *** Display BitMap graphics in slice
Show 0
; *** Pause briefly
VWait 100
; *** Remove old slice
FreeSlices
; *** Create another slice
Slice 0,44,320,256,$fff9,3,8,8,320,320
; *** Display BitMap graphics in slice
Show 0
VWait 100
; *** Remove old slice (again!)
FreeSlices
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SETBPLCON0

Mode(s): Amiga/Blitz
Statement: set Slice display mode
Syntax: SetBPLCON0 DEFAULT

This statement allows advanced control of Slice display modes. The DEFAULT parameter should be set
as follows:

Table 6.5 : Display modes

BIT Mode
===
1 External sync (for genlock enabling)
2 Interlace mode
3 Enable light pen

Here is an example:

; *** SetBPLCON0 example
; *** Filename - SetBPLCON0.bb2

; *** Create a BitMap (4 bitplanes)
BitMap 0,640,512,4
; *** Set Interlace mode
SetBPLCON0 4
; *** Pop into Blitz mode

6.Bitmaps and Slices

157

BLITZ
; *** Open large slice
Slice 0,44,640,256,$fffb,4,8,8,1280,1280
; *** Declare interrupt
SetInt 5
 If Peek($dff004)<0 Show 0,0,0 Else Show 0,0,1
End SetInt
; *** Output BitMap graphics
For A=1 To 400
 Circle Rnd(640),Rnd(512),Rnd(30)+10,Rnd(16)
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

6.2.4 Displaying a BitMap in a Slice
SHOW

Mode(s): Amiga/Blitz
Statement: display a BitMap in the current Slice
Syntax: Show BITMAP#[,X,Y]

The SHOW statement is used to display a BitMap in the currently used Slice. If the optional X and Y
parameters are included then the BitMap is positioned at these co-ordinates. For example:

; *** Show example
; *** Filename - Show.bb2

; *** Number of stars to plot
STARS=100
; *** Pop into Blitz mode
BLITZ
; *** Open a BitMap (2 bitplanes)
BitMap 0,320,DispHeight,2
; *** Plot a random starfield
For A=0 To STARS
 Plot Rnd(320),Rnd(DispHeight),Rnd(3)+1
Next A
; *** Create a slice
Slice 0,44,2
; *** Grab BitMap's palette
Use Palette 0
; *** Display BitMap
Show 0
; *** Wait for a mouse click
MouseWait

6.Bitmaps and Slices

158

; *** Return to Blitz Basic 2 editor
End

If the BitMap is physically larger than the Slice then the SHOW statement may be used to scroll the
BitMap about the display.

Here is an example:

; *** Land generator
; *** Filename - Show2.bb2

; *** Nip into Blitz mode
BLITZ
; *** Open 2-screen wide display
BitMap 0,640,256,2
Slice 0,44,320,256,$fff8,2,8,4,640,640
Show 0
; *** Simple colour graduation
For A=0 To 15
 ColSplit 1,0,A,A,A*17
 ColSplit 3,A,A,A,100+A*17
Next
Cls 1
; *** Draw mountain landscape
Y=200 : LAND=3 : DI=-1
For X=0 To 640
 D=Int(Rnd(LAND))
 If D=1 Then DI=-1
 If D=2 Then DI=1
 Let Y+DI
 If Y<0 Then Y=0
 If Y>256-1 Then Y=255
 Line X,256,X,Y,3
Next X
; *** Scroll landscape
For A=1 To 320
 Show 0,A,0
VWait
Next A
; *** Return to Blitz Basic 2 editor
End

Do not use SHOW for dual-playfield Slices. Use the following commands instead.

6.Bitmaps and Slices

159

SHOWF

Mode(s): Amiga/Blitz
Statement: display a BitMap in the foreground of the current Slice
Syntax: ShowF BITMAP#[,X,Y]
Syntax 2: ShowF BITMAP#,X,Y,ShowB X2

The SHOWF statement is used to display a BitMap in the foreground of the currently used dual-
playfield Slice. If the optional X and Y parameters are included then the BitMap is positioned at these
coordinates. The optional SHOWB X2 parameter (syntax 2) is of use when a Slice has been set up to
display a foreground BitMap only. In this case, the x offset of the background BitMap should be
specified by the SHOWB parameter.

SHOWB

Mode(s): Amiga/Blitz
Statement: display a BitMap in the background of the current Slice
Syntax: ShowB BITMAP#[,X,Y]
Syntax 2: ShowB BITMAP#,X,Y,ShowF X2

The SHOWB statement is used to display a BitMap in the background of the currently used dual-
playfield Slice. If the optional X and Y parameters are included then the BitMap is positioned at these
coordinates. The optional SHOWF X2 parameter (syntax 2) is of use when a Slice has been set up to
display a background BitMap only. In this case, the x offset of the foreground BitMap should be
specified by the SHOWF parameter:

; *** Dual Playfield example
; *** Filename - ShowF.bb2

BLITZ
; *** Open 2 BitMaps
BitMap 0,352,256+32,2
BitMap 1,352,256+32,2
; *** Create single Slice to house BitMaps
Slice 0,44,320,256,$fffa,4,8,32,352,352
; *** Display BitMap 0 in background
ShowB 0
; *** Display BitMap 1 in foreground
ShowF 1
RGB 1,0,0,15
RGB 9,15,0,0
Use BitMap 0
; *** Draw foreground graphics
For Y=0 To 256 Step 16
 For X=0 To 352 Step 16
 COL=1-COL
 Boxf X,Y,X+16,Y+16,COL

6.Bitmaps and Slices

160

 Next
Next
Use BitMap 1
; *** Draw background graphics
For Y=0 To 288 Step 16
 For X=0 To 352 Step 16
 COL=1-COL
 Boxf X,Y,X+16,Y+16,COL
 Next
Next
; *** Scroll playfields
While Joyb(0)=0
 VWait
 X=QWrap(X+1,0,32)
 Y=QWrap(Y+1,0,32)
 ShowB 0,X,0,Y
 ShowF 1,0,Y,X
Wend
; *** Return to Blitz Basic 2 editor
End

SHOWBLITZ

Mode(s): Blitz
Statement: redisplay all Slices
Syntax: ShowBlitz

SHOWBLITZ redisplays all of the Slices curently opened. This is primarily of use when you have made a
trip into Amiga mode and wish to return to Blitz mode without corrupting any Slices.

DISPLAY

Mode(s): Blitz
Statement: allows you to turn the display on or off
Syntax: DisplayOn/Off

The DISPLAY statement is used to turn the whole display on or off. If DISPLAY is set to OFF then the
display will become a solid block of colour 0. Here is an example:

; *** Display example
; *** Filename - Display.bb2

BitMap 0,320,256,3
; *** Direct PRINT statements to BitMap
BitMapOutput 0
For A=1 To 100
 ; *** Select a random cursor location...

6.Bitmaps and Slices

161

 Locate Rnd(30),Rnd(25)
 ; *** ...And a random colour
 Colour Rnd(6)+1
 Print "Blitz Basic"
Next A
; *** Enter Blitz mode
BLITZ
; *** Turn off display
DisplayOff
Slice 0,44,3
Show 0
VWait 100
; *** Turn on display
DisplayOn
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

6.3 End-of-Chapter summary
BitMaps are used for rendering graphics and may be created using the BITMAP statement, or borrowed
from a screen using the SCREENSBITMAP statement.

Blitz Basic also allows you to load and manipulate BitMaps in the form of IFF graphics.

Slices are Blitz mode screens. However, unlike screens, Slices can be used to create dual-playfield and
double-buffered displays.

BitMaps are displayed in Slices using the SHOW statement. The SHOW statement may also be used to
create gigantic scrolling displays.

Table 6.6 : BitMap and Slice commands

Command Function
==
BITMAP Create a BitMap
BITPLANESBITMAP Create a "Dummy" BitMap
COPYBITMAP Clone a BitMap
DISPLAY Turn display on or off
FREE BITMAP Close a BitMap
FREESLICES Close all Slices
LOADBITMAP Load an IFF screen
REMAP Change BitMap colours
SAVEBITMAP Save an IFF screen
SCREENSBITMAP Attach BitMap to Intuition screen
SHOW Display BitMap in a Slice
SHOWB Display BitMap in background
SHOWBLITZ Redisplay all Slices
SHOWF Display BitMap in foreground
SLICE Create a Slice

6.Bitmaps and Slices

162

USE BITMAP Set current BitMap
USE SLICE Set current Slice

6.Bitmaps and Slices

163

Chapter 7 : Graphics
Blitz Basic 2 is a powerful extended BASIC language. This means that it supports commands not present
in languages such as AmigaBasic or HiSoft Basic. As well as a comprehensive array of drawing
commands, the Blitz programmer also has Colour Palettes, IFF Animation and Copper Lists at their
disposal. Read on...

7.1 2D Drawing
Blitz Basic can generate fabulous low-resolution and high-resolution graphic displays using its powerful
drawing commands. These graphic displays are made up of small blocks of colour called pixels and all
screens are composed of thousands of pixels in varying arrangements. Here's how we manipulate these
pixels to produce anything from lines and circles to starfields and megademos.

7.1.1 Clearing with colour
CLS

Mode(s): Amiga/Blitz
Statement: clear a BitMap
Syntax: Cls [COLOUR]

This statement is used to fill the currently used BitMap with the colour specified by the COLOUR
parameter. If the optional COLOUR parameter is omitted then the BitMap will be cleared with colour (0).
A COLOUR parameter of (-1) will cause the entire BitMap to be inverted. For example:

; *** Cls example
; *** Filename - Cls.bb2

; *** Open a screen...
Screen 0,3
; *** ...And grab its BitMap
ScreensBitMap 0,0
; *** Loop until mouse button clicked
While Joyb(0)=0
 ; *** Clear screen a variety of different colours
 Cls Rnd(5)+1
 ; *** Pause briefly
 VWait 10
Wend
; *** Return to Blitz Basic 2 editor
End

164

7.1.2 Gunpowder plot
PLOT

Mode(s): Amiga/Blitz
Statement: plot an individual colour pixel
Syntax: Plot X,Y,COLOUR

The PLOT statement plots a single pixel at coordinates X,Y in colour COLOUR on the currently used
BitMap. A COLOUR parameter of (-1) will cause the pixel to be inverted. For example:

; *** Plot Starfield
; *** Filename - Plot_Example.bb2

; *** Number of stars in starfield
STARS=100
; *** Nice space-type palette (i.e. grey!)
PalRGB 0,0,0,0,0
PalRGB 0,1,10,10,10
PalRGB 0,2,7,7,7
PalRGB 0,3,3,3,3
; *** Create Blitz mode display
BLITZ
BitMap 0,320,DispHeight,2
; *** Plot a random starfield
For A=0 To STARS
 Plot Rnd(320),Rnd(DispHeight),Rnd(3)+1
Next A
Slice 0,44,320,DispHeight,$fff8,2,8,8,320,320
Use Palette 0
Show 0
; *** Wait for left mouse button
MouseWait
; *** Return to Blitz Basic 2 editor
End

You can really only make very simple pictures with PLOT. To make more comlicated ones you need
special equipment such as a graphics tablet. Blitz Basic does not support these devices directly, so any
graphics should be created using a paint package, such as Deluxe Paint, saved in IFF format and loaded
into Blitz using the LOADBITMAP statement.

7.Graphics

165

7.1.3 A few pointers
POINT

Mode(s): Amiga/Blitz
Function: return the colour of an individual pixel
Syntax: a=Point(X,Y)

Use the POINT function to return the colour of a particular pixel on the currently used BitMap. If the
chosen coordinates specify a pixel outside the currently defined BitMap then a value of (-1) will be
returned. Try the following example:

; *** Point me in the right...
; *** Filename - Point_Example.bb2

; *** Define palette
PalRGB 0,0,0,0,0
PalRGB 0,1,10,0,7
; *** Open a screen and grab its BitMap
Screen 0,3
ScreensBitMap 0,0
; *** Direct PRINT statement to BitMap
BitMapOutput 0
Use Palette 0
; *** Draw 1000 coloured boxes
For A=1 To 1000
 X1=Rnd(310)
 X2=X1+10
 Y1=Rnd(DispHeight-20)+15
 Y2=Y1+10
 Boxf X1,Y1,X2,Y2,Rnd(5)
Next A
Locate 0,2
; *** Select random pixel to test
B=Point(Rnd(320),Rnd(DispHeight))
Print B
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

7.Graphics

166

7.1.4 It's a fine line
LINE

Mode(s): Amiga/Blitz
Statement: draw a line
Syntax: Line X1,Y1,X2,Y2,COLOUR
Syntax 2: Line X2,Y2,COLOUR

The LINE statement draws a line connecting two pixels on the currently used BitMap. The first syntax
uses two sets of graphic coordinates to join, followed by the colour of the line. A COLOUR parameter of
(-1) will cause the line to be inverted. For example:

; *** Line Example
; *** Filename - Line.bb2

; *** Open a screen and grab its BitMap
Screen 0,3
ScreensBitmap 0,0
; *** Draw a simple straight line
Line 10,10,50,10,1
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

If the optional X1 and Y1 parameters are omitted, as in the second syntax, then the current position of
the graphics cursor will be used as the starting co-ordinates:

; *** More Lines
; *** Filename - Line2.bb2

; *** Open a screen and grab its BitMap
Screen 0,3
ScreensBitmap 0,0
; *** Draw 50 lines at random co-ordinates
For A=1 To 50
 Line Rnd(320),Rnd(DispHeight),Rnd(7)+1
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

7.Graphics

167

7.1.5 Boxing clever
BOX

Mode(s): Amiga/Blitz
Statement: draw a rectangular outline
Syntax: Box X1,Y1,X2,Y2,COLOUR

Rectangular outlines can be drawn on the currently used BitMap with the BOX statement. X1 and Y1 are
the coordinates of the top left-hand corner of the rectangle and X2 and Y2 are the coordinates of the
bottom right-hand corner. COLOUR is the colour of the outline; a COLOUR parameter of (-1) will cause
the rectangle to be inverted. For example:

; *** Boxing ring
; *** Filename - Box.bb2

BLITZ
; *** Open Blitz mode display
BitMap 0,320,256,5
Slice 0,44,320,256,$fff8,5,8,32,320,320
Show 0
; *** Alter palette
RGB 1,0,0,15
; *** Vertical boxes
For Y=0 To 256 Step 16
 ; *** Horizontal boxes
 For X=0 To 320 Step 16
 ; *** Toggle square colour
 COL=1-COL
 ; *** Draw square
 Box X,Y,X+15,Y+15,COL
 Next X
Next Y
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

BOXF

Mode(s): Amiga/Blitz
Statement: draw a solid rectangle
Syntax: Boxf X1,Y1,X2,Y2,COLOUR

7.Graphics

168

BOXF is identical to the BOX statement except it is used to draw solid rectangular shapes, as opposed to
outlines. X1 and Y1 are the coordinates of the top left-hand corner of the rectangle and X2 and Y2 are
the coordinates of the bottom right-hand corner. COLOUR is the colour of the outline; a COLOUR
parameter of (-1) will cause the rectangle to be inverted.

Simple but effective screen wipes can be created with BOXF. Here is an example:

; *** Screen wipe
; *** Filename - Wipe.bb2

BLITZ
; *** Open 2 BitMaps for double-buffering
BitMap 0,320,DispHeight,3
Cls 7
BitMap 1,320,DispHeight,3
Cls 7
; *** Define display Slice
Slice 0,44,320,256,$fff8,3,8,8,320,320
Show 0
; *** Starting co-ordinates for box
X1=160
X2=160
Y1=DispHeight/2
Y2=DispHeight/2
; *** Main loop
Repeat
 ; *** Draw rectangle
 Boxf X1,Y1,X2,Y2,0
 ; *** Decrease box size
 Let X1-1
 Let X2+1
 Let Y1+1
 Let Y2-1
 ; *** Wait for Vertical Blank
 VWait
 ; *** Double-buffering routine
 Show MAP : MAP=1-MAP : Use BitMap MAP
; *** Until co-ordinates meet
Until X1=0
; *** Return to Blitz Basic 2 editor
End

7.Graphics

169

7.1.6 Circle circus
CIRCLE

Mode(s): Amiga/Blitz
Statement: draw a circular or eliptical outline
Syntax: Circle X,Y,RADIUS,COLOUR
Syntax 2: Circle X,Y,RADIUS,YRADIUS,COLOUR

Drawing circles and elipses is very simple with Blitz Basic. Set the position of the centre of the circle
using X and Y, followed by the radius of the circle.

If the optional YRADIUS parameter is included then an elipse may be drawn instead. COLOUR is the
colour of the outline; a COLOUR parameter of (-1) will cause the circle to be inverted. The following
example generates a dual-playfield circle effect, reminiscant of the "Spaceballs: State Of The Art"
megademo:

; *** Demo circle effect
; *** Filename - Silly_Circles.bb2

BLITZ
; *** Open 2 BitMaps for double buffering
BitMap 0,640,512,3
BitMap 1,640,512,3
; *** Draw differently sized circles
For A=0 To 400 Step 10
 Circle 320,250,400-A,Rnd(7)+1
Next A
; *** Clone BitMap graphics
CopyBitMap 1,0
Slice 0,44,320,256,$fffa,6,8,16,640,640
Repeat
 VWait
 ; *** Define circular path
 X1=160+Sin(R)*160
 Y1=128+Cos(R)*128
 X2=160-Sin(R)*160
 Y2=128-Cos(R)*128
 ; *** Show foreground graphics
 ShowF 1,X1,Y1,X2
 ; *** Show background graphics
 ShowB 0,X2,Y2,X1
 Let R+0.05
Until Joyb(0)>0
; *** Return to Blitz Basic 2 editor
End

7.Graphics

170

CIRCLEF

bn: Amiga/Blitz
Statement: draw a solid circle or elipse
Syntax: Circlef X,Y,RADIUS,COLOUR
Syntax 2: Circlef X,Y,RADIUS,YRADIUS,COLOUR

CIRCLEF works the same as CIRCLE except that it draws solid circles, as opposed to outlines.

If the optional YRADIUS parameter is included then an elipse may be drawn instead. COLOUR is the
colour of the outline; a COLOUR parameter of (-1) will cause the circle to be inverted. For example:

; *** Solid Circles
; *** Filename - Circlef.bb2

BLITZ
; *** Open BLITZ mode display
BitMap 0,320,256,5
Slice 0,44,5
Show 0
; *** Draw 100 random circles and ellipses
For A=1 To 100
 Circlef Rnd(320),Rnd(256),Rnd(10)+5,Rnd(15)+2,Rnd(30)+1
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

7.1.7 Polygon power
POLY

Mode(s): Amiga/Blitz
Statement: draw multiple line
Syntax: Poly POINTS,COORDS.w,COLOUR

The POLY statement is another BitMap-based command which is used to draw multiple line objects. The
COORDS.w parameter contains the co-ordinates of each point to join up, from either an array or
NewType of words. In this way, complex outlines can be created using a single statement. COLOUR is
the colour of the polygon. For example:

7.Graphics

171

; *** Hyperspace
; *** Filename - Poly.bb2

NEWTYPE .HYP
 ; *** Define polygon co-ordinates
 XOFF.w
 YOFF
 X1
 Y1
End NEWTYPE
BLITZ
; *** Open 2 BitMaps for double buffering
BitMap 0,320,DispHeight,3
BitMap 1,320,DispHeight,3
Slice 0,44,3
Show 0
Mouse On
While Joyb(0)=0
 Cls
 ; *** Wait for Vertical Blank
 VWait
 ; *** Set polygon co-ordinates
 A.HYP\XOFF=Rnd(320),Rnd(256),MouseX,MouseY
 ; *** Draw polygon
 Poly 2,A,Rnd(7)+1
 ; *** Double-buffering routine
 Show MAP : MAP=1-MAP : Use BitMap MAP
Wend
; *** Return to Blitz Basic 2 editor
End

POLYF

Mode(s): Amiga/Blitz
Statement: draw a solid polygon
Syntax: Polyf POINTS,COORDS.w,COLOUR[,COLOUR2]

POLYF is used to draw polygons and is the filled equivalent of POLY. The COORDS.w parameter contains
the co-ordinates of each point to join up, from either an array or NewType of words.

The optional COLOUR2 parameter, if included, will be used if the co-ordinates are listed in anti-
clockwise order. If COLOUR2 is equal to (-1) then the polygon will not be drawn if the vertices are listed
in anti-clockwise order. This is useful when designing three-dimensional objects to create depth. Here's
an example:

7.Graphics

172

; *** Polygon triangles
; *** Filname - Polyf.bb2

NEWTYPE .TRIG
 ; *** Define polygon co-ordinates
 XOFF.w
 YOFF
 X1
 Y1
 X2
 Y2
End NEWTYPE
BLITZ
; *** Open BLITZ mode display
BitMap 0,320,DispHeight,3
Slice 0,44,3
Show 0
; *** Repeat until mouse click
While Joyb(0)=0
 VWait
 ; *** Set polygon co-ordinates
 A.TRIG\XOFF=Rnd(320),Rnd(256),Rnd(320),Rnd(256),Rnd(320),Rnd(256)
 ; *** Draw polygon
 Polyf 3,A,Rnd(7)+1
Wend
; *** Return to Blitz Basic 2 editor
End

7.1.8 Fill her up!
FLOODFILL

Mode(s): Amiga/Blitz
Statement: fill a screen region with colour
Syntax: FloodFill X,Y,COLOUR[,BORDER]

The FLOODFILL statement will fill any part of the screen with a solid block of colour, starting at
coordinates X,Y. If the optional BORDER parameter is included then the filled region will be surrounded
by a border of that colour:

; *** Filling station
; *** Filename - FloodFill.bb2

BLITZ
; *** Open BLITZ mode display
BitMap 0,320,256,3

7.Graphics

173

Slice 0,44,3
Show 0
; *** Fill screen ten times
For A=1 To 10
 FloodFill 1,1,A
Next A
; *** Return to Blitz Basic 2 editor
End

; *** FloodFill example 2
; *** Filename - FloodFill2.bb2

BLITZ
; *** Open BLITZ mode display
BitMap 0,320,256,3
BitMapOutput 0
Slice 0,44,3
Show 0
Box 1,1,319,199,1
Repeat
 ; *** Generate random colour
 COL=Int(Rnd(5)+2)
 ; *** Fill rectangle
 FloodFill 50,50,COL,1
 Locate 15,27
 ; *** Print current colour
 Colour COL
 NPrint "Colour ",COL
Until Joyb(0)>0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

FREEFILL

Mode(s): Amiga/Blitz
Statement: free 2D fill drawing memory
Syntax: FreeFill

Blitz Basic uses a single monochrome BitMap the size of the BitMap being used to calculate its filled
routines. FREEFILL will free any memory that Blitz uses to execute the commands BOXF, CIRCLEF and
FLOODFILL. Only use FREEFILL if you don't need access to any of these commands. For example:

7.Graphics

174

; *** FreeFill example
; *** Filename - FreeFill.bb2

BLITZ
; *** Open Blitz mode display
BitMap 0,320,256,3
Slice 0,44,3
Show 0
; *** Fill screen ten times
For A=1 To 10
 FloodFill 1,1,A
Next A
; *** No more access to drawing commands!
FreeFill
; *** Illegal access!
For A=1 To 10
 FloodFill 1,1,A
Next A
; *** Wait for a mouse click
MouseWait
; *** End the show
End

7.2 Palettes
Palette objects, or palettes, are temporary storage areas of colour information. This information can be
taken either from an IFF (Interchangeable File Format) file or created from scratch. If colour information
is created by the user then it will not affect the current screen colours until the USE PALETTE statement
has been executed.

7.2.1 Loading a palette object
LOADPALETTE

Mode(s): Amiga
Statement: load a palette object
Syntax: LoadPalette PALETTE#,"FILENAME"[,OFFSET]

LOADPALETTE loads a palette object from disk. The "FILENAME" parameter specifies the name of an IFF
file (such as a DPaint picture) containing colour information. If the file contains colour cycling
information, then this will also be loaded into the palette object. LOADPALETTE will not affect currently
displayed colours until USE PALETTE is executed. For example:

7.Graphics

175

; *** LoadPalette example
; *** Filename - LoadPalette.bb2

Screen 0,5,"Loading screen and palette"
F$="FILENAME.IFF"
; *** Load IFF screen from disk
LoadScreen 0,F$
; *** Load IFF screen's palette
LoadPalette 0,F$
; *** Add screen's palette to display
Use Palette 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

7.2.2 Controlling palette objects
USE PALETTE

Mode(s): Amiga/Blitz
Statement: set current palette object
Syntax: Use Palette PALETTE#

This statement sets the specified palette object as the current palette object. USE PALETTE is used to
add the colours contained within a colour palette to the current display. Here is an example:

; *** Use Palette example
; *** Filename - Use Palette.bb2

For A=1 To 10
 ; *** Create custom palette
 PalRGB 0,A,Rnd(7),Rnd(7),Rnd(7)
Next A
; *** Open screen and grab its BitMap
Screen 0,3,"Colour screen"
ScreensBitMap 0,0
BitMapOutput 0
; *** Draw some BitMap graphics in default colours
For B=1 To 100
 Circlef Rnd(320),Rnd(200)+30,Rnd(10)+5,Rnd(15)+3,Rnd(6)+1
Next B
Locate 0,2
NPrint "Before Use Palette"
; *** Display custom palette
VWait 100

7.Graphics

176

Use Palette 0
Locate 0,2
NPrint "After Use Palette "
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SHOWPALETTE

Mode(s): Amiga/Blitz
Statement: display current palette object
Syntax: ShowPalette PALETTE#

The SHOWPALETTE statement displays a palette object in the current screen or Slice. SHOWPALETTE
must be executed after a palette object has been defined, otherwise it will not be visible. Here is an
example:

; *** ShowPalette example
; *** Filename - ShowPalette.bb2

; *** Define a random palette
For A=0 To 10
 PalRGB 0,A,Rnd(9),Rnd(9),Rnd(9)
Next A
; *** Open screen and grab its BitMap
Screen 0,3,"ShowPalette"
ScreensBitMap 0,0
; *** Add palette to display
ShowPalette 0
; *** Plot a random starfield
For B=0 To 100
 Plot Rnd(320),Rnd(200)+20,Rnd(8)+1
Next B
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

NEWPALETTEMODE

Mode(s): Amiga/Blitz
Statement: set output of Use Palette
Syntax: NewPaletteMode On/Off

7.Graphics

177

NEWPALETTEMODE is used to enhance compatibility with older Blitz Basic 2 programs. If
NEWPALETTEMODE is set to (Off) then USE PALETTE will perform identically to SHOWPALETTE, and if it
is set to (On) then USE PALETTE will perform as normal. This is because the USE PALETTE statement has
been updated - and indeed superceeded - by the SHOWPALETTE statement.

FREE PALETTE

Mode(s): Amiga/Blitz
Statement: erase a palette object
Syntax: Free Palette PALETTE#

FREE PALETTE erases the contents of the palette object specified by PALETTE#. It does not affect the
current display colours. Example:

; *** Free Palette example
; *** Filename - Free_Palette.bb2

; *** Define a random palette
For A=0 To 10
 PalRGB 0,A,Rnd(9),Rnd(9),Rnd(9)
Next A
; *** Open screen and grab its BitMap
Screen 0,3,"ShowPalette"
ScreensBitMap 0,0
; *** Add palette to display
ShowPalette 0
; *** Plot a random starfield
For B=0 To 100
 Plot Rnd(320),Rnd(200)+20,Rnd(8)+1
Next B
; *** Remove palette
Free Palette 0
Cls 0
; *** Plot another random starfield
For B=0 To 100
 Plot Rnd(320),Rnd(200)+20,Rnd(8)+1
Next B
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

7.Graphics

178

7.2.3 Manipulating palettes
PALRGB

Mode(s): Amiga/Blitz
Statement: set a colour register within a palette object
Syntax: PalRGB PALETTE#,REGISTER,RED,GREEN,BLUE

The PALRGB statement allows you to set an individual colour register within a palette object. Values for
REGISTER are taken from the Amiga's standard 32 colour registers. The colour change will not become
evident until the USE PALETTE statement is used. Try the following example:

; *** PalRGB example
; *** Filename - PalRGB.bb2

; *** Define random colour palette
PalRGB 0,0,Rnd(7),Rnd(7),Rnd(7)
PalRGB 0,1,Rnd(15),Rnd(15),Rnd(15)
PalRGB 0,2,0,0,0
; *** Open screen (3 bitplanes)
Screen 0,3,"Colour screen"
; *** Add colour palette to display
Use Palette 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

RGB

Mode(s): Amiga/Blitz
Statement: set a colour register to an RGB colour value
Syntax: RGB REGISTER,RED,GREEN,BLUE

RGB allows you to set an individual colour register in a palette to an RGB colour value. Values for
REGISTER are taken from the Amiga's standard 32 colour registers. RGB does not affect palette objects.
For example:

7.Graphics

179

; *** RGB example
; *** Filename - RGB.bb2

BLITZ
; *** Open BLITZ mode display
BitMap 0,320,256,3
Slice 0,44,3
Show 0
; *** Change colour register 0, 15 times
For A=1 To 15
 RGB 0,Rnd(15),Rnd(15),Rnd(15)
 VWait 20
Next A
; *** Return to Blitz Basic 2 editor
End

The RED, GREEN and BLUE statements return the amount of their respected colour in a specified colour
register. The returned values range from zero to 15.

RED

Mode(s): Amiga/Blitz
Function: return the amount of RGB red in a colour register
Syntax: r=Red(REGISTER)

Values for REGISTER are taken from the Amiga's standard 32 colour registers. For example:

; *** Red example
; *** Filename - Red.bb2

; *** Open screen and grab its BitMap
Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0
; *** Set red to 8
RGB 0,8,0,0
Locate 0,3
; *** Returns "8"
NPrint "Red = ",Red(0)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

7.Graphics

180

GREEN

Mode(s): Amiga/Blitz
Function: return the amount of RGB green in a colour register
Syntax: g=Green(REGISTER)

Values for REGISTER are taken from the Amiga's standard 32 colour registers. For example:

; *** Green example
; *** Filename - Green.bb2

; *** Open screen and grab its BitMap
Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0
; *** Set green to 10
RGB 0,0,10,0
Locate 0,3
; *** Returns "10"
NPrint "Green = ",Green(0)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

BLUE

Mode(s): Amiga/Blitz
Function: return the amount of RGB blue in a colour register
Syntax: b=Blue(REGISTER)

Values for REGISTER are taken from the Amiga's standard 32 colour registers. Here is an example:

; *** Blue example
; *** Filename - Blue.bb2

; *** Open screen and grab its BitMap
Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0
; *** Set blue to 14
RGB 0,0,0,14
Locate 0,3
; *** Returns "14"
NPrint "Blue = ",Blue(0)

7.Graphics

181

; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

7.3 Fades
The Blitz Basic fade commands can be used to create impressive screen wipes and transitions. Here's a
brief overview...

7.3.1 Fading into and out of reality
FADEIN

Mode(s): Blitz
Statement: fade in a colour palette
Syntax: FadeIn PALETTE#[,RATE][,LOW,HIGH]

The FADEIN statement is used to fade in the palette of the current Slice from black, to the RGB values in
PALETTE#. The optional RATE parameter allows you to control the speed of the fade (0 is the fastest
fade). The optional LOW and HIGH parameters allow you to control which palette registers are affected
by the fade. All palette registers between the values of LOW and HIGH will fade in. Consult the
FADEOUT example.

FADEOUT

Mode(s): Blitz
Statement: fade out a colour palette
Syntax: FadeOut PALETTE#[,RATE][,LOW,HIGH]

The FADEOUT statement is used to fade out the palette of the current Slice from the RGB values in
PALETTE#, to black. The optional RATE parameter allows you to control the speed of the fade (0 is the
fastest fade). The optional LOW and HIGH parameters allow you to control which palette registers are
affected by the fade. All palette registers between the values of LOW and HIGH will fade out.

Try the following example:

; *** Fading Example
; *** Filename - Fade.bb2

SPEED=2
BitMap 0,320,256,4
; *** Load IFF file to fade in
LoadBitMap 0,"FILENAME.IFF",0
BLITZ
Slice 0,44,4

7.Graphics

182

; *** Set all colours to black
For A=0 To 15
 RGB A,0,0,0
Next A
Show 0
; *** Fade in image
VWait 100
FadeIn 0,SPEED
; *** Fade out image
VWait 100
FadeOut 0,SPEED
VWait 100
; *** Return to Blitz Basic 2 editor
End

7.3.2 Manual fading
If Blitz Basic's automatic fading isn't to your satisfaction then why not try the more powerful manual
fading commands. These allow you much more control over the speed of the fade and enable you to
synchronise screen fading with program execution.

ASYNCFADE

Mode(s): Amiga/Blitz
Statement: control palette fading
Syntax: ASyncFade On/Off

ASYNCFADE controls how the above fade commands operate. Normally, FADEIN and FADEOUT will halt
program execution, fade, and then continue program execution (ASYNCFADE OFF - the default mode).
ASYNCFADE ON switches this auto-fade off and DOFADE must be executed to perform the next step of
the fade.

DOFADE

Mode(s): Blitz
Statement: execute the next step of a fade
Syntax: DoFade

The DOFADE statement executes the next step of a fade. It must be called after one of the above fade
commands.

7.Graphics

183

FADESTATUS

Mode(s): Blitz
Function: return number of remaining fade steps
Syntax: f=FadeStatus

FADESTATUS may be used in conjunction with the DOFADE statement to determine whether or not
there are any more fade steps to execute. If a fade has finished then (0) is returned, and if there are fade
steps left then (-1) is returned.

Here is a complete manual fade example:

; *** Manual fading
; *** Filename - DoFade.bb2

SPEED=2
BitMap 0,320,256,4
; *** Load IFF file to fade in
LoadBitMap 0,"FILENAME.IFF",0
BLITZ
Slice 0,44,4
; *** Set all colours to black
For A=0 To 15
 RGB A,0,0,0
Next A
; *** Turn manual fading on
ASyncFade On
Show 0
BitMapOutput 0
FadeIn 0,1
; *** Fade in picture
Repeat
 DoFade
 Let B+1
 Locate 0,0
 Print "Fade step ",B
 VWait 20
Until FadeStatus=0
; *** Return to Blitz Basic 2 editor
End

7.4 Colour cycling
If you are familiar with the Deluxe Paint series of programs then you will probably already know about
the simplest form of colour cycling. This type makes each of the colours in the colour palette change
places, or cycle.

7.Graphics

184

SETCYCLE

Mode(s): Amiga
Statement: define colour cycling for a specified palette
Syntax: SetCycle PALETTE#,CYCLE#,LOW,HIGH[,SPEED]

The SETCYCLE statement is used to define colour cycling information for the CYCLE statement.
PALETTE# is the number of the palette to cycle. You may define a maximum of seven different colour
cycles for a single palette, each determined by a unique CYCLE# number. All palette registers between
the values of LOW and HIGH will cycle. The optional SPEED parameter specifies the speed of the cycle,
either (-1) or (1); a negative value will cycle the colours in reverse. For example:

; *** SetCycle example
; *** Filename - SetCycle.bb2

Screen 0,5
F$="FILENAME.IFF"
; *** Load IFF file and colour information
LoadScreen 0,F$
LoadPalette 0,F$
; *** Add colour palette to display
Use Palette 0
; *** Cycle backwards
SetCycle 0,0,1,10,-1
Cycle 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

CYCLE

Mode(s): Amiga
Statement: execute defined colour cycling
Syntax: Cycle PALETTE#

CYCLE is used to execute the colour cycling information defined with SETCYCLE. PALETTE# is the
number of the palette to cycle. Here is an example:

; *** A nice day for a Cycle
; *** Filename - Cycle.bb2

Screen 0,5
F$="FILENAME.IFF"

7.Graphics

185

; *** Load IFF file and colour information
LoadScreen 0,F$
LoadPalette 0,F$
; *** Add colour palette to display
Use Palette 0
; *** Cycle palette
Cycle 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

STOPCYCLE

Mode(s): Amiga
Statement: stop defined colour cycling
Syntax: StopCycle

The STOPCYCLE statement stops all colour cycling in its tracks. For example:

; *** StopCycle example
; *** Filename - StopCycle.bb2

Screen 0,5
F$="FILENAME.IFF"
; *** Load IFF screen and colour information
LoadScreen 0,F$
LoadPalette 0,F$
; *** Add colour palette to display
Use Palette 0
; *** Cycle colour palette
Cycle 0
MouseWait
; *** Stop colour palette cycling
StopCycle
VWait 100
; *** Return to Blitz Basic 2 editor
End

7.5 Copper Lists
The Amiga's co-processor, or Copper, is used to generate subtly coloured "rainbow" backgrounds, and
to create special display effects. Because the Copper works in parallel it can execute instructions at the
same time as the main processor.

7.Graphics

186

7.5.1 Copper load of this
COLSPLIT

Mode(s): Amiga/Blitz
Statement: control palette colour registers
Syntax: ColSplit REGISTER,RED,GREEN,BLUE,Y

If you've ever marvelled at the colourful "rainbows" that seem to be part of every platform game or
demo, and wondered how to create them in Blitz Basic then look no further.

The COLSPLIT statement is used to change the palette colour registers at a position relative to the top
of the current Slice. As will be explained in the next chapter, the Amiga's hardware provides 32 colour
registers. However, only colour registers zero through 15 can be affected by COLSPLIT. In practice, this
colour can be assigned a different value for each horizontal scan line, to create really smooth colour
graduations.

RED, GREEN and BLUE are the RGB components of the colour register, and the Y parameter specifies a
vertical offset from the top of the Slice. Here are some examples:

; *** Simple copper - planet mars
; *** Filename - ColSplit1.bb2

BLITZ
; *** Open BLITZ mode display (1 bitplane)
BitMap 0,320,260,1
Slice 0,44,320,260,$fff8,1,8,2,320,320
Show 0
; *** Define colour registers 1 through 11
For A=1 To 11
 ColSplit 0,A,0,A,A*20
Next
; *** Define colour register 0
ColSplit 0,0,0,0,260
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

The second example gives a useful demonstration of how the copper instructions can be used to
generate "rainbow text". This is where a copper list is placed behind a text string to create multi-colour
text. To produce rainbow text, the text must be generated using the same colour register as is affected
by COLSPLIT (the copper list must also be placed at the same y co-ordinate as the text!):

7.Graphics

187

; *** ColSplit example 2
; *** Filename - ColSplit2.bb2

BLITZ
; *** Open BLITZ mode display (1 bitplane)
BitMap 0,320,256,1
Slice 0,44,320,256,$fff8,1,8,2,320,320
Show 0
BitMapOutput 0
For A=0 To 7
 ColSplit 0,A,A,A,A
Next A
; *** Generate upper rainbow
For B=8 To 15
 ColSplit 0,15-B,15-B,15-B,B
Next B
For C=0 To 7
 ColSplit 0,C,C,C,55+C
Next C
; *** Generate lower rainbow
For D=8 To 15
 ColSplit 0,15-D,15-D,15-D,55+D
Next D
For E=0 To 7
 ColSplit 1,E,0,E,20+E*3
Next E
; *** Text message to display between rainbows
Locate 1,4
Print "Cool copper bars Blitz Basic 2 style!"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

7.5.2 Custom copper lists
If the COLSPLIT statement is not powerful enough for your needs then why not take a look at the other
Copper-based statement, CUSTOMCOP. This allows the advanced Blitz Basic programmer to introduce
custom copper instructions.

CUSTOMCOP

Mode(s): Amiga/Blitz
Statement: create custom copper lists
Syntax: CustomCop SOURCE$,Y

7.Graphics

188

The CUSTOMCOP statement is used to execute custom copper instructions at a specified position from
the top of the display. SOURCE$ is a string of characters equivalent to a series of copper instructions.
The Y parameter is the y offset of the copper list. Custom copper lists are not for the faint hearted! Try
the following example:

; *** CustomCop example
; *** Filename - CustomCop.bb2

BLITZ
; *** Some hardware trickery
#BPLMOD1=$108
#BPLMOD2=$10A
; *** Open BLITZ mode display
BitMap 0,640,256,3
Slice 0,44,320,256,$FFF8,3,8,32,640,640
Show 0

; *** Create mountain landscape
RGB 2,9,0,0
Y=100 : LAND=3 : DI=-1
For X=0 To 640
 D=Int(Rnd(LAND))
 If D=1 Then DI=-1
 If D=2 Then DI=1
 Let Y+DI
 If Y<0 Then Y=0
 If Y>356-1 Then Y=355
 Line X,356,X,Y,2
Next X

; *** Mirror mountain
ColSplit 2,0,0,8,150
CO$=Mki$(#BPLMOD1)+Mki$(-122)
CO$+Mki$(#BPLMOD2)+Mki$(-122)
CustomCop CO$,150+44

; *** Scroll display
For X=0 To 320
 VWait
Show 0,X,0
Next X
; *** Return to Blitz Basic 2 editor
End

7.Graphics

189

7.5.3 Copper list functions
The following functions are used to obtain information about the Blitz mode copper list.

COPLOC

Mode(s): Amiga/Blitz
Function: return the memory address of Blitz mode copper list
Syntax: c=CopLoc

Blitz Basic merges all Slices and copper lists into a single copper list. The COPLOC function returns the
memory address of the Blitz mode copper list. For example:

; *** CopLoc example
; *** Filename - CopLoc.bb2

BLITZ
; *** Open BLITZ mode display
BitMap 0,320,260,1
Slice 0,44,320,260,$fff8,1,8,2,320,320
Show 0
BitMapOutput 0
; *** Create a simple copper list
For A=1 To 10
 ColSplit 1,A,A,A,A*2
Next
; *** Output address of copper list
Locate 0,1
NPrint CopLoc
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

COPLEN

Mode(s): Amiga/Blitz
Function: return the length of Blitz mode copper list
Syntax: c=CopLen

Blitz Basic merges all Slices and copper lists into a single copper list. COPLEN returns the length, in
bytes, of the Blitz mode copper list. Try the following example:

7.Graphics

190

; *** CopLen example
; *** Filename - CopLen.bb2

BLITZ
; *** Open BLITZ mode display
BitMap 0,320,260,1
Slice 0,44,320,260,$fff8,1,8,2,320,320
Show 0
BitMapOutput 0
; *** Output length, in bytes, of copper list
NPrint CopLen," bytes before rainbow."
VWait 100
Cls
; *** Create simple copper list
For A=1 To 11
 ColSplit 0,0,A,A,A*20
Next
ColSplit 0,0,0,0,260
; *** Output new length of copper list
Locate 0,0
NPrint CopLen," bytes after rainbow."
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

7.6 IFF Animation
Blitz Basic can also display full-screen IFF animations, such as those created with the suberb Deluxe
Paint IV program. Remember that, the larger the animation, and the more colours involved, the more
memory intensive the animation will be! Animations with fewer colours do tend to run faster when
displayed using the powerful Blitz Basic animation commands. Here's how...

7.6.1 Animated antics
LOADANIM

Mode(s): Amiga
Statement: load an IFF animation into memory
Syntax: LoadAnim ANIM#,"FILENAME"[,PALETTE#]

The LOADANIM statement is used to load an IFF animation into memory. In order to create the correct
screen size and resolution for the animation you may use the ILBMINFO statement. The optional
PALETTE# parameter can be used to load the animation's colour palette into memory. Try the following
example:

7.Graphics

191

; *** Loading Animations
; *** Filename - LoadAnim.bb2

F$="FILENAME.ANIM"
; *** Analyse animation
ILBMInfo F$
; *** Open screen to animation dimensions
Screen 0,0,0,ILBMWidth,ILBMHeight,ILBMDepth,ILBMViewMode,"",1,2
; *** Grab screen's BitMap
ScreensBitmap 0,0
Bitmap 1,ILBMWidth,ILBMHeight,ILBMDepth
; *** Load animation
LoadAnim 0,F$,0
Use Palette 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

INITANIM

Mode(s): Amiga/Blitz
Statement: initialise animation
Syntax: InitAnim ANIM#[,BITMAP#]

INITANIM renders the first frame of the animation onto the current BitMap and, if the optional BITMAP#
parameter is included, renders the second frame onto the specified BitMap. This is for creating flicker-
free double-buffered animations. For example:

; *** InitAnim example
; *** Filename - InitAnim.bb2

F$="FILENAME.ANIM"
; *** Analyse animation
ILBMInfo F$
; *** Open screen to animation dimensions
Screen 0,0,0,ILBMWidth,ILBMHeight,ILBMDepth,ILBMViewMode,"",1,2
; *** Grab screen's BitMap
ScreensBitMap 0,0
BitMap 1,ILBMWidth,ILBMHeight,ILBMDepth
; *** Load animation
LoadAnim 0,F$,0
Use Palette 0
; *** Render 1st and 2nd frames of animation
InitAnim 0,0
; *** Wait for a mouse click

7.Graphics

192

MouseWait
; *** Return to Blitz Basic 2 editor
End

NEXTFRAME

Mode(s): Amiga/Blitz
Statement: draw next animation frame
Syntax: NextFrame ANIM#

Rendering of frames to the current BitMap is achieved through the use of the NEXTFRAME statement. If
the last frame of the animation has been rendered NEXTFRAME will automatically loop back to the
beginning of the animation. Here is an example:

; *** NextFrame example
; *** Filename - NextFrame.bb2

; *** Repeat until mouse click
While Joyb(0)=0
 ; *** Double buffering routine
 ShowBitMap DB
 VWait SPEED
 DB=1-DB
 Use BitMap DB
 ; *** Loop back to beginning of animation
 NextFrame 0
Wend
; *** Return to Blitz Basic 2 editor
End

FRAMES

Mode(s): Amiga/Blitz
Function: return the number of frames in an animation
Syntax: f=Frames(ANIMATION)

The FRAMES function simply returns the number of frames in a specified animation. This is useful if, for
example, you want to stop an animation before it loops. For example (load an animation into memory
prior to the following code):

; *** Frames example
; *** Filename - Frames.bb2

F=Frames(0)

7.Graphics

193

A=1
; *** Repeat until last frame is reached
While A<=F
 ; *** Double buffering routine
 ShowBitmap DB
 VWait
 DB=1-DB
 Use Bitmap DB
 ; *** Next frame of animation
 NextFrame 0
 Let A+1
Wend
; *** Return to Blitz Basic 2 editor
End

7.6.2 A full example
The following example is a general-purpose animation viewer. It uses the double-buffering technique
explained above to create perfect, flicker-free animations. Remember to insert your own filename into
F$. Example:

; *** Displaying an animation
; *** Filename - Animation_example.bb2

F$="FILENAME.ANIM"
SPEED=1 ; *** Frame delay
; *** Analyse animation
ILBMInfo F$
; *** Open screen to animation dimensions
Screen 0,0,0,ILBMWidth,ILBMHeight,ILBMDepth,ILBMViewMode,"",1,2
; *** Grab screen's BitMap
ScreensBitMap 0,0
BitMap 1,ILBMWidth,ILBMHeight,ILBMDepth
; *** Load animation
LoadAnim 0,F$,0
Use Palette 0
; *** Initialise animation
InitAnim 0,0
While Joyb(0)=0
 ; *** Double buffering routine
 ShowBitMap DB
 VWait SPEED
 DB=1-DB
 Use BitMap DB
 ; *** Next frame of animation
 NextFrame 0
Wend
; *** Return to Blitz Basic 2 editor
End

7.Graphics

194

7.7 End-of-Chapter summary
Pixels are the thousands of tiny elements which make up the Amiga's display. Single pixels are plotted
using the PLOT statement. Pixel colours are read using the POINT statement.

Table 7.1 : 2D drawing commands

Shape Command
=========================
Square BOX/BOXF
Rectangle BOX/BOXF
Circle CIRCLE/CIRCLEF
Ellipse CIRCLE/CIRCLEF
Polygon POLY/POLYF

Palettes are temporary storage areas of colour information. This information can be taken either from
an IFF (Interchangeable File Format) file or created from scratch using PALRGB or RGB.

The COLSPLIT statement is used manipulate the Copper chip in order to create colour rainbows. Custom
copper lists can be created with the CUSTOMCOP statement. The Copper can be programmed to mirror
text, stretch graphics and clone images. For a full example of custom copper lists please consult
Appendix 2.

Blitz Basic can display and manipulate standard Deluxe Paint animations. Remember that, the larger the
animation, and the more colours involved, the more memory intensive the animation will be!
Animations with fewer colours do tend to run faster when displayed in Blitz.

7.Graphics

195

Chapter 8 : Sprites and Shapes
This chapter covers the manipulation of sprites and shape objects in Blitz Basic 2. It will also show you
the finer points of collision detection. Here goes...

8.1 Sprites
What is a sprite? Well, it's an object which can move across the screen - a monster or car -
independently of other objects or the background. Sprites are initialised by either loading them from
disk, or by converting a shape object into a sprite object using the GETASPRITE statement.

Sprites are handled entirely by the Amiga's hardware so they do not interfere or corrupt BitMap
graphics in any way. Basically this means that sprites do not have to be erased manually when they are
moved. However, there are some limitations that must be observed when using sprites:

Sprites are only available in Blitz mode
Sprites must be of either three or 15 colours (two/four bitplanes)

The resolution of all sprites corresponds to the lowest screen resolution (i.e. 320*200 or 320*256 pixels).
Sprite co-ordinates are also always given in the lowest resolution (320*200 or 320*256).

Slices can display a maximum of eight sprites. This is because sprites are displayed by the Amiga's eight
sprite channels, numbered (0) through (7).

If you are displaying a three-colour sprite, you may specify any of the eight sprite channels (0 through
7). However, if you are displaying a 15-colour sprite, you may only specify an even-numbered sprite
channel (e.g. 0,2,4 or 6). Because 15-colour sprites require two sprite channels, they also need to use the
associated odd-numbered sprite channel. For example, displaying a 15-colour sprite through sprite
channel (2) will make sprite channel (3) unavailable.

The Amiga's hardware limits individual sprites to a maximum width of 16 low-resolution pixels. All
sprites are therefore 16 pixels wide and have selectable height. However, Blitz Basic allows you to
display sprites of greater width by splitting a shape up into groups of sixteen pixels. This means that a
sprite may take up more than one sprite channel.

The number of sprite channels needed can be worked out using the following formulae:

For 3-colour sprites use : CHANNELS=(WIDTH/16)
For 15-colour sprites use : CHANNELS=(WIDTH/16) * 2

For example, a 32 pixel wide 3-colour sprite displayed through sprite channel (2) will actually be
converted to two 16 pixel wide sprites displayed through channels (2) and (3) - (32 pixels wide/16 = two
sprite channels).

Similarly, a 48 pixel wide 15-colour sprite displayed through sprite channel (0) will take up sprite
channels (0) through (5) - ((48 pixels wide/16) * 2 = six sprite channels!).

All sprite colours are taken from the Amiga's standard 32 colour registers, but the number of registers
needed depend on the number of colours and the sprite channels involved.

196

Fifteen-colour sprites take their RGB values from colour registers 17 through 31. These are initially taken
from the current Slice palette, but can be altered using the RGB statement. This means that, to display a
15-colour sprite on a 32 colour Slice, you would create your background or palette in 32-colour mode,
and draw your sprites using colour numbers 17 to 31 only. When you come to display your sprites they
will be drawn the correct colour.

Three-colour sprites, however, take on RGB values depending upon the sprite channels being used to
display them. Each pair of three-colour sprite channels (0/1,2/3,4/5 and 6/7) use the same colour
registers for definition of sprite colours. The following table shows the colour register assignment:

Table 8.1 : Sprite colour registers

Sprite channel Transparent Colour registers
===
0,1 16 17-19
2,3 20 21-23
4,5 24 25-27
6,7 28 29-31

Note that for each pair of sprites there is one register that is transparent, and three colour registers. So,
to display a three-colour sprite on a 32 colour Slice, you would draw your sprites using colour numbers
17 to 19 only.

8.1.1 Loading sprites from disk
LOADSPRITES

Mode(s): Amiga
Statement: load a range of sprites from disk
Syntax: LoadSprites FIRST[,LAST],"FILENAME"

The LOADSPRITES statement is used to load a range of sprites into memory from disk. The FIRST
parameter is the number of the first sprite to load from a previously created sprite bank, and the
optional LAST parameter specifies the number of the last sprite to load. Try the following example:

; *** LoadSprites example
; *** Filename - LoadSprites.bb2

LoadSprites 0,"SPRITES"
BitMap 0,320,256,4
BLITZ
Slice 0,44,4
Show 0
ShowSprite 0,150,100,0
; *** Wait for a mouse click
MouseWait

8.Sprites and Shapes

197

; *** Return to Blitz Basic 2 editor
End

8.1.2 Saving sprites to disk
SAVESPRITES

Mode(s): Amiga
Statement: save a range of sprites to disk
Syntax: SaveSprites FIRST,LAST,"FILENAME"

This statement is used to save a range of sprites to disk from memory. The FIRST parameter is the
number of the first sprite to save from a sprite bank held in memory, and the LAST parameter specifies
the number of the last sprite to save

; *** SaveSprites example
; *** Filename - SaveSprites.bb2

BitMap 0,320,256,4
Boxf 0,0,20,20,3
GetaShape 0,0,0,20,20
GetaSprite 0,0
SaveSprites 0,0,"RAM:SPRITE"
Cls
Free Sprite 0
LoadSprites 0,"RAM:SPRITE"
BLITZ
Slice 0,44,4
Show 0
ShowSprite 0,150,100,0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.1.3 Sprite commands
SHOWSPRITE

Mode(s): Amiga/Blitz
Statement: display a Sprite on the screen
Syntax: ShowSprite SPRITE#,X,Y,CHANNEL

This statement puts a hardware sprite on the screen, whose resolution corresponds to the current
screen resolution. The X and Y parameters specify the coordinates of the sprite (in low-resolution pixels

8.Sprites and Shapes

198

only). The Amiga hardware sprites can be controlled using channel numbers 0-7. Here is an example:

; *** ShowSprite example
; *** Filename - ShowSprite.bb2

BitMap 0,320,256,4
Circle 10,10,9,3
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
BLITZ
Slice 0,44,4
Show 0
For X=0 To 320
 VWait
 ShowSprite 0,X,20,0
Next X
; *** Return to Blitz Basic 2 editor
End

GETASPRITE

Mode(s): Amiga/Blitz
Statement: convert shape object to a sprite object
Syntax: GetaSprite SPRITE#,SHAPE#

The GETASPRITE statement converts a shape object to a sprite object. SHAPE# is the number of a
previously initialised shape object to convert and SPRITE# is the number of the destination sprite object.
For example:

; *** GetaSprite example
; *** Filename - GetaSprite.bb2

BitMap 0,320,256,2
Boxf 0,0,63,63,2
GetaShape 0,0,0,32,32
GetaSprite 0,0
Free Shape 0
Cls
BLITZ
Slice 0,44,2
Show 0
For A=0 To 3
 RGB A*4+17,15,15,0
 RGB A*4+18,15,8,0
 RGB A*4+19,15,4,0
Next A

8.Sprites and Shapes

199

For X=0 To 320
 VWait
 ShowSprite 0,X,20,0
Next X
; *** Return to Blitz Basic 2 editor
End

INFRONT

Mode(s): Amiga/Blitz
Statement: convert sprite display to infront/behind a BitMap
Syntax: InFront CHANNEL

One of the great features of hardware sprites is that they may be displayed in front of or behind any
BitMap graphics. The INFRONT statement is used to convert sprite display to infront/behind BitMaps.
CHANNEL must be an even number of value 0, 2, 4, 6 or 8. Sprites displayed using sprite channels
greater than or equal to CHANNEL will appear behind any BitMap graphics, whilst those less than
CHANNEL will appear in front:

; *** Using InFront
; *** Filename - InFront.bb2

; *** ... Create sprite here

InFront 4
; *** ... Insert display routines

; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

In the above example (pseudo code only), sprites 4, 5, 6 and 7 will appear
behind and sprites 0, 1, 2 and 3 will appear in front. Here is a full
example:

; *** InFront example
; *** Filename - InFront2.bb2

PalRGB 0,1,15,0,15
BitMap 0,320,256,2
Boxf 0,0,63,63,1
GetaShape 0,0,0,64,64
GetaSprite 0,0
Cls
BitMapOutput 0
Locate 10,10
For WORDS=1 To 50

8.Sprites and Shapes

200

 Locate Rnd(30)+5,Rnd(20)+3
 Print "Hello"
Next WORDS
BLITZ
Slice 0,44,2
Show 0
Use Palette 0
For A=0 To 3
 RGB A*4+17,15,15,0
 RGB A*4+18,15,8,0
 RGB A*4+19,15,4,0
Next A
InFront 4
For X=0 To 320
 VWait
 ShowSprite 0,X,20,0
 ShowSprite 0,X,120,4
Next X
; *** Return to Blitz Basic 2 editor
End

Note that you should only use the INFRONT statement with single-playfield Slices. If you want to create
some dual-playfield Slice magic then use the following two commands.

INFRONTF

Mode(s): Amiga/Blitz
Statement: dual playfield version of InFront (foreground)
Syntax: InFrontF CHANNEL

The INFRONTF statement is used with dual-playfield Slices to control sprite/playfield priority with
respect to the foreground playfield. CHANNEL must be an even number of value 0,2,4,6 or 8. Sprites
displayed using sprite channels greater than or equal to CHANNEL will appear behind any BitMap
graphics, whilst those less than CHANNEL will appear in front.

INFRONTB

Mode(s): Amiga/Blitz
Statement: dual playfield version of InFront (background)
Syntax: InFrontB CHANNEL

The INFRONTB statement is used with dual-playfield Slices to control sprite/playfield priority with
respect to the background playfield. CHANNEL must be an even number of value 0,2,4,6 or 8. Sprites
displayed using sprite channels greater than or equal to CHANNEL will appear behind any BitMap
graphics, whilst those less than CHANNEL will appear in front:

8.Sprites and Shapes

201

; *** InFrontF/InFrontB example
; *** Filename - InFrontB.bb2

BitMap 1,320,256,2
Boxf 80,50,240,150,3
BitMap 0,320,256,2
Boxf 0,0,63,63,1
GetaShape 0,0,0,32,32
GetaSprite 0,0
Free Shape 0
Cls
Circlef 160,100,90,3
Circlef 160,100,50,0
BLITZ
Slice 0,44,320,256,$fff2,4,8,32,320,320
ShowF 0
ShowB 0,10,0
For A=0 To 3
 RGB A*4+17,15,15,0
 RGB A*4+18,15,8,0
 RGB A*4+19,15,4,0
Next A
InFrontF 4
InFrontF 2
InFrontB 4
For X=0 To 320
 VWait
 ShowSprite 0,X,20,0
 ShowSprite 0,X,80,2
 ShowSprite 0,X,140,4
Next X
; *** Return to Blitz Basic 2 editor
End

8.2 Shapes
The Amiga range of computers have access to an extremely powerful graphic shifter called the Blitter
chip. Blitter Objects, or "Bobs" for short, are images which can be displayed on screen with lightning
speed, but must be displayed and updated by the user to avoid graphic corruption. For reasons know
only to Acid Software, Blitz Basic refers to these Bobs as shapes, or shape objects. These shape objects
may be used in a variety of different ways, such as gadgets, menu items or game graphics.

Many commands are available for the purpose of drawing shapes onto a BitMap. These commands use
the Amiga's blitter chip to achieve this, and are therefore very fast. The process of putting a shape onto
a BitMap using the blitter is often referred to as "blitting" a shape.

The blitting speed of a shape is affected by its size and the blitting technique (in Blitz Basic there are
three main blitting techniques). Obviously, larger shapes take longer to "blit" than smaller ones. Also,
shapes with more colours take longer to blit.

8.Sprites and Shapes

202

The technique used to draw a shape also affects its speed. The fastest blitting command is the BLIT
statement, however this provides no way of erasing the shape to allow for movement. QBLIT allows for
movement, but it does corrupt BitMap graphics in the process. The most powerful blitting command,
BBLIT, is also the slowest, as it allows for movement and doesn't corrupt any BitMap graphics.

8.2.1 Loading and saving shapes
LOADSHAPE

Mode(s): Amiga
Statement: load an IFF file into a shape object
Syntax: LoadShape SHAPE#,"FILENAME"[,PALETTE#]

This statement loads an IFF file (such as a DPaint picture) into a shape object. The optional PALETTE#
parameter is used to load the colour information contained in the file into a palette object. Here is an
example:

; *** LoadShape example
; *** Filename - LoadShape.bb2

Screen 0,3
ScreensBitMap 0,0
LoadShape 0,"A SHAPE.IFF",0
Use Palette 0
Blit 0,30,30
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SAVESHAPE

Mode(s): Amiga
Statement: save a shape object to an IFF file
Syntax: SaveShape SHAPE#,"FILENAME"[,PALETTE#]

SAVESHAPE saves the information contained in a shape object into an IFF file. The optional PALETTE#
parameter allows you to save the shape's colour information as well. For example:

; *** SaveShape example
; *** Filename - SaveShape.bb2

BLITZ
BitMap 0,320,256,5
Slice 0,44,5

8.Sprites and Shapes

203

Show 0
BitMapOutput 0
For A=1 To 50
 Locate Rnd(30),Rnd(20)
 Colour Rnd(30)+1,Rnd(30)+1
 NPrint "Totally flipped!"
Next A
GetaShape 0,0,0,320,200
QAMIGA
SaveShape 0,"RAM:SHAPE.IFF"
Cls
LoadShape 0,"RAM:SHAPE.IFF"
Blit 0,0,0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

LOADSHAPES

Mode(s): Amiga
Statement: load a range of shapes from disk
Syntax: LoadShapes FIRST,[,LAST],"FILENAME"

The LOADSHAPES statement is used to load a range of shapes into memory from disk. The FIRST
parameter specifies the number of the first shape object to be loaded. If the optional LAST parameter is
included then only the shapes up to and including this value will be loaded:

; *** LoadShapes example
; *** Filename - LoadShapes.bb2

LoadShapes 0,"SHAPES"
BLITZ
BitMap 0,320,256,5
Slice 0,44,5
Show 0
Use Palette 0
; *** Blit first shape in range
Blit 0,0,0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.Sprites and Shapes

204

SAVESHAPES

Mode(s): Amiga
Statement: save a range of shapes to disk
Syntax: SaveShapes FIRST,LAST,"FILENAME"

SAVESHAPES is used to save a range of shapes to disk. The FIRST parameter specifies the number of the
first shape object to be saved, and the LAST parameter specifies the number of the last shape object to
be saved. Here's an example:

; *** SaveShapes example
; *** Filename - SaveShapes.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
Boxf 0,0,10,10,2
GetaShape 0,0,0,10,10
Boxf 0,0,10,10,3
GetaShape 1,0,0,10,10
QAMIGA
SaveShapes 0,2,"RAM:SHAPES"
Cls
LoadShapes 0,"RAM:SHAPES"
Blit 0,140,100
Blit 1,160,100
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.2.2 Grabbing shapes
GETASHAPE

Mode(s): Amiga/Blitz
Statement: grab a BitMap image into a shape object
Syntax: GetaShape SHAPE#,X,Y,WIDTH,HEIGHT

Grabbing chunks of BitMaps is a speciality of Blitz Basic. The GETASHAPE statement copies a
rectangular area of the currently used BitMap into the shape object specified by SHAPE#. The X and Y
parameters are the coordinates of the top left of the box and the WIDTH and HEIGHT parameters
specify the size of the area in pixels. Try the following example:

8.Sprites and Shapes

205

; *** GetaShape example
; *** Filename - GetaShape.bb2

Screen 0,3,"My Blobs"
ScreensBitMap 0,0
Circlef 100,100,10,5
GetaShape 0,80,80,120,120
For A=1 To 10
 Blit 0,Rnd(100)+10,Rnd(100)+30
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.2.3 Manipulating shapes
COPYSHAPE

Mode(s): Amiga/Blitz
Statement: copy one shape object to another shape object
Syntax: CopyShape SOURCE,DESTINATION

The COPYSHAPE statement copies one shape object (SOURCE) into another shape object
(DESTINATION). This is a quick and simple way of creating "carbon copies" of shapes. For example:

; *** CopyShape example
; *** Filename - CopyShape.bb2

PalRGB 0,1,15,15,15
Screen 0,3,"Hello"
ScreensBitMap 0,0
GetaShape 0,0,0,50,10
For A=1 To 4
 CopyShape 0,A
 Blit A,50,50+(A*20)
Next A
Use Palette 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.Sprites and Shapes

206

HANDLE

Mode(s): Amiga/Blitz
Statement: set reference point for all shape coordinate calculations
Syntax: Handle SHAPE#,X,Y

The HANDLE statement sets the reference point of the shape object, SHAPE#. The handle offset (X,Y) is
measured in pixels from the top left-hand corner of the shape. For example:

; *** Handle example
; *** Filename - Handle.bb2

Screen 0,3,"My Blobs"
ScreensBitMap 0,0
BitMapOutput 0
Circle 100,100,10,6
GetaShape 0,80,80,120,120
Cls
NPrint "Default handle"
Blit 0,50,50
Locate 0,6
NPrint "User handle"
Handle 0,40,40
Blit 0,50,50
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

For those who don't fancy getting their hands dirty, Blitz Basic provides an automatic method of
centring these reference points.

MIDHANDLE

Mode(s): Amiga/Blitz
Statement: set reference point to shape's centre
Syntax: MidHandle SHAPE#

Here is an example:

; *** MidHandle example
; *** Filename - MidHandle.bb2

Screen 0,3
ScreensBitMap 0,0

8.Sprites and Shapes

207

BitMapOutput 0
Circle 100,100,10,6
GetaShape 0,80,80,120,120
Cls
NPrint "Using Midhandle"
MidHandle 0
Blit 0,70,60
VWait 100
Cls
Locate 0,0
NPrint "Manual handle"
Handle 0,ShapeWidth(0)/2,ShapeHeight(0)/2
Blit 0,70,60
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.2.4 Shape functions
SHAPEWIDTH

Mode(s): Amiga/Blitz
Function: return the width of a shape object
Syntax: w=ShapeWidth SHAPE#

SHAPEWIDTH returns the width of a shape object in pixels.

SHAPEHEIGHT

Mode(s): Amiga/Blitz
Function: return the height of a shape object
Syntax: h=ShapeHeight SHAPE#

SHAPEHEIGHT returns the height of a shape object in pixels. For example:

; *** Shape dimensions example
; *** Filename - ShapeHeight.bb2

VWait 20
BLITZ
BitMap 0,320,256,3
For A=0 To 10
Boxf 10,10,200,200,Rnd(6)+1
 GetaShape A,10,10,Rnd(100)+60,Rnd(100)+70
Next A
Cls

8.Sprites and Shapes

208

BitMapOutput 0
Slice 0,44,3
Show 0
For B=0 To 10
 Blit B,10,50
 W=ShapeWidth(B)
 H=ShapeHeight(B)
 Locate 0,0
 NPrint "Shape : ",B
 NPrint "Width : ",W," pixels"
 NPrint "Height : ",H," pixels"
 VWait 50
 Cls
Next B
; *** Return to Blitz Basic 2 editor
End

8.2.5 Automatic shape flipping
The characters in most commercial computer games are composed of hundreds of individual frames of
animation. There are frames where the object is animating left to right, and up and down. Naturally, the
more frames you have, the greater the disk space needed to store the objects, and the greater the
amount of memory needed to display the objects.

Instead of storing seperate objects in the shape bank for reversed images, you can use Blitz 2's
automatic shape flipping commands.

XFLIP

Mode(s): Amiga/Blitz
Statement: flip a shape horizontally
Syntax: XFlip SHAPE#

This statement reverses a shape object horizontally about the y-axis, thus creating a mirror image. XFLIP
replaces the old shape object with this mirror image. To avoid this happening, use the COPYSHAPE
statement to "clone" a shape and perform all shape manipulation commands on this instead. Try the
following example:

; *** XFlip example
; *** Filename - XFlip.bb2

PalRGB 0,1,15,15,15
BLITZ
BitMap 0,320,256,1
BitMapOutput 0
Locate 1,1
NPrint "Totally flipped!"
Box 7,5,134,17,1

8.Sprites and Shapes

209

GetaShape 0,7,5,134,17
Cls
CopyShape 0,1
XFlip 1
Slice 0,44,1
Use Palette 0
Show 0
Blit 0,10,10
Blit 1,4,25
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

To mirror a shape object about the x-axis (i.e. vertically) you use the following statement.

YFLIP

Mode(s): Amiga/Blitz
Statement: flip a shape vertically
Syntax: YFlip SHAPE#

For example:

; *** YFlip example
; *** Filename - YFlip.bb2

BLITZ
BitMap 0,320,256,5
BitMapOutput 0
For A=1 To 50
 Locate Rnd(30),Rnd(20)
 Colour Rnd(30)+1,Rnd(30)+1
 NPrint "Totally flipped!"
Next A
GetaShape 0,0,0,320,100
Cls
CopyShape 0,1
YFlip 1
Slice 0,44,5
Use Palette 0
Show 0
Blit 0,0,0
Blit 1,0,105
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.Sprites and Shapes

210

8.2.6 Shape scaling and rotation
If you are familiar with the Super Nintendo console then you will be aware of its special graphics mode:
Mode 7. Mode 7 uses the SNES hardware to bend, rotate, twist, and scale graphics to create totally new
images - and in realtime too!. Whilst Blitz Basic is no match for the Super Nintendo's custom hardware,
it can be used to create some wonderful special effects, such as scaling and rotation.

SCALE

Mode(s): Amiga/Blitz
Statement: scale a shape object
Syntax: Scale SHAPE#,X_RATIO,Y_RATIO[,PALETTE#]

Blitz Basic allows direct manipulation of a shape's size, although unfortunately not in realtime. The
SCALE statement is used to stretch and shrink shape objects beyond recognition!

The X_RATIO and Y_RATIO parameters control the ratio of the enlargement/reduction. They are fully
independent of each other and as such, different scaling can be applied to each axis:

Table 8.2 : SCALE ratios

RATIO Effect
===============================
<1 Reduction in size
=1 No reduction/enlargement
>1 Enlargement in size

The optional PALETTE# parameter is used to specify a palette object for use in the scaling operation. If a
palette is supplied then a shape may be shrunk without experiencing a loss in detail.

Try the following example, which uses the SCALE statement to magnify a text string. The routine takes a
little while to generate the text, so do be patient!:

; *** Shape Scaling
; *** Filename - Scale.bb2

PalRGB 0,1,15,15,15
BLITZ
BitMap 0,320,256,1
BitMapOutput 0
Slice 0,44,1
Use Palette 0
Show 0
Locate 1,1
NPrint "Magnified text!!"
GetaShape 0,7,5,134,17
Cls
CopyShape 0,1

8.Sprites and Shapes

211

Scale 0,2,2
Blit 1,10,10
Blit 0,4,100
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

ROTATE

Mode(s): Amiga/Blitz
Statement: rotate a shape object
Syntax: Rotate SHAPE#,ANGLE_RATIO

The ROTATE statement is used to rotate a shape object. The ANGLE_RATIO parameter specifies the size
of clockwise rotation to be applied, in the range 0-1:

Table 8.3 : ROTATE angle ratios

ANGLE_RATIO Size of rotation
=============================
0.00 0 degrees
0.25 90 degrees
0.50 180 degrees
0.75 270 degrees
1.00 360 degrees

Here is an example:

; *** Shape Rotation
; *** Filename - Rotate.bb2

PalRGB 0,1,15,15,15
BLITZ
BitMap 0,320,256,1
BitMapOutput 0
Locate 1,1
NPrint "Rotated, I'm sure"
Box 7,5,144,17,1
GetaShape 0,7,5,144,17
Cls
For A=1 To 4
 CopyShape 0,A
 Rotate A,A/10
 Blit A,50+(A*20),50
Next A
Slice 0,44,1

8.Sprites and Shapes

212

Use Palette 0
Show 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.2.7 Cookiecuts
AUTOCOOKIE

Mode(s): Amiga/Blitz
Statement: toggle cookiecut mode
Syntax: AutoCookie On/Off

When shape objects are used by any of the blitting commands they usually require the presence of a
"cookiecut". These cookiecuts do not affect the appearance or qualities of a shape object, but they do
consume Chip memory. When a shape is created using the LOADSHAPE or GETASHAPE commands, a
cookiecut is automatically created for it. This may be turned off using the AUTOCOOKIE OFF statement
and is primarily of use for shapes used as gadgets or in menus. Example:

; *** AutoCookie example
; *** Filename - AutoCookie.bb2

Screen 0,3
ScreensBitMap 0,0
For A=7 To 1 Step -1
 Circlef 16,32,A*2,A
Next
GetaShape 0,0,16,32,32
SaveShape 0,"RAM:SHAPE"
Cls
AutoCookie Off
LoadShape 0,"RAM:SHAPE"
ShapeGadget 0,148,50,0,1,0
TextGadget 0,140,180,0,2," Quit "
Window 0,0,20,320,200,$100f,"Select a gadget",1,2,0
Repeat
Until WaitEvent=64 AND GadgetHit=2
; *** Return to Blitz Basic 2 editor
End

8.Sprites and Shapes

213

MAKECOOKIE

Mode(s): Amiga/Blitz
Statement: create a cookiecut for a shape
Syntax: MakeCookie SHAPE#

MAKECOOKIE is used to create a cookiecut for a shape object. Here's an example:

; *** MakeCookie example
; *** Filename - MakeCookie.bb2

Screen 0,3
ScreensBitMap 0,0
For A=7 To 1 Step -1
 Circlef 16,32,A*2,A
Next
GetaShape 0,0,16,32,32
SaveShape 0,"RAM:SHAPE"
Cls
AutoCookie Off
LoadShape 0,"RAM:SHAPE"
; *** Try removing the next line
MakeCookie 0
For B=1 To 100
 Blit 0,Rnd(260)+30,Rnd(150)+30
Next B
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.3 Blitting
The following section covers all of the commands that are used to draw shapes on to BitMaps using the
Amiga's Blitter chip.

As has been explained, there are three main blitting techniques: BLIT, QBLIT and BBLIT.

BLIT is the simplest blitting technique. It is primarily of use when displaying static images as it has no
provision for the movement of shapes.

QBLIT does allow for movement, however it does corrupt any background graphics present. It is useful
for animating shapes on blank backgrounds or on dual-playfield displays (where the shapes are
displayed on one playfield and the background is held on another).

The great thing about BBLIT is that you don't have to worry about shapes corrupting your background
graphics. Because the background is held in a special storage buffer, Blitz automatically redraws the
background BitMap every time the shapes are moved.

8.Sprites and Shapes

214

8.3.1 A simple blit
BLIT

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap
Syntax: Blit SHAPE#,X,Y[,EXCESS]

The BLIT statement is the simplest of the blitting commands. Is is used to draw a shape object (SHAPE#)
on the currently used BitMap at the co-ordinates specified by the X and Y parameters.

If the optional EXCESS parameter is included then any excess bitplanes may be set on or off. This is
primarily of use when a shape object has fewer bitplanes than the BitMap on which it is displayed.
EXCESS allows you to specify an on/off value for the excess bitplanes (i.e. the bitplanes beyond those
altered by the shape):

Table 8.4 : The EXCESS parameter

Bit On/Off value for...
========================
0 First bitpane
1 Second bitplane
2 Third bitplane
3 Fourth bitplane
4 Fifth bitplane

The BLITMODE statement may be used to alter the output of the BLIT statement. Here is a full example:

; *** Blit example
; *** Filename - Blit.bb2

BLITZ
BitMap 0,640,256,3
Slice 0,44,320,256,$fff8,3,8,8,640,640
Show 0
For A=1 To 15
 ColSplit 1,A,A,A,99+A
Next A
RGB 0,0,0,0
RGB 1,15,15,15
Boxf 20,20,40,40,1
GetaShape 0,20,20,40,40
Cls 0
For X=0 To 320
 VWait
 Blit 0,X,100
Next X
; *** Wait for a mouse click

8.Sprites and Shapes

215

MouseWait
; *** Return to Blitz Basic 2 editor
End

CLIPBLIT

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap
Syntax: ClipBlit SHAPE#,X,Y

CLIPBLIT works identically to the BLIT statement, except it will clip the shape object to the inside of the
currently used BitMap. For example:

; *** ClipBlit example
; *** Filename - ClipBlit.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
RGB 0,0,0,0
RGB 1,15,0,15
Boxf 20,20,40,40,1
GetaShape 0,20,20,40,40
Cls 0
; *** If you replace this line with
; *** a normal blit command then
; *** Blitz will generate a "Coords
; *** outside of BitMap" error
ClipBlit 0,310,100
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

BLOCK

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap
Syntax: Block SHAPE#,X,Y

This is an extremely fast version of the BLIT statement. However, BLOCK should only be used with
shapes that are 16,32,48,64 etc. pixels wide and that are blitted to an x co-ordinate of 0,16,32,48,64 etc.
(i.e. divisible by 16). The height and y co-ordinate of the shape are not limited by the BLOCK statement.
Here is an example:

8.Sprites and Shapes

216

; *** Block example
; *** Filename - Block.bb2

Dim MAP(10,5)
BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
For A=0 To 7
 Boxf 9+A,9+A,26-A,26-A,A
Next A
GetaShape 0,10,10,26,26
Cls
Restore DAT
For Y=1 To 5
 For X=1 To 10
 Read MAP(X,Y)
 If MAP(X,Y)=1
 Block 0,X*16,Y*16
 End If
 Next X
Next Y
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

DAT:
Data 1,0,0,1,0,0,1,1,1,0
Data 1,0,0,1,0,0,0,1,0,0
Data 1,1,1,1,0,0,0,1,0,0
Data 1,0,0,1,0,0,0,1,0,0
Data 1,0,0,1,0,0,1,1,1,0

8.3.2 Blit modes
BLITMODE

Mode(s): Amiga/Blitz
Statement: change Blit mode
Syntax: BlitMode BLTCON0

The BLITMODE statement is used to alter the output of the BLIT statement when drawing shape objects
onto BitMaps:

8.Sprites and Shapes

217

Table 8.5 : Blit modes

BLTCON0 Description
===
CookieMode Shape drawn normally (default mode)
EraseMode Shape erases destination BitMap
InvMode Shape inversed on destination BitMap
SolidMode Shape drawn as a solid area of one colour

COOKIEMODE

Mode(s): Amiga/Blitz
Function: change Blit mode to default
Syntax: BlitMode CookieMode

The COOKIEMODE function returns a value which may be used by one of the commands involved in
blitting modes. Using COOKIEMODE as a blitting mode will cause a shape to be blitted normally onto a
BitMap.

ERASEMODE

Mode(s): Amiga/Blitz
Function: change Blit mode to erase mode
Syntax: BlitMode EraseMode

The ERASEMODE function returns a value which may be used by one of the commands involved in
blitting modes. Using ERASEMODE as a blitting mode will cause a shape to erase a section of a BitMap
corresponding to the outline of the shape.

INVMODE

Mode(s): Amiga/Blitz
Function: change Blit mode to inverse mode
Syntax: BlitMode InvMode

The INVMODE function returns a value which may be used by one of the commands involved in blitting
modes. Using INVMODE as a blitting mode will cause a shape to invert a section of a BitMap
corresponding to the outline of the shape.

8.Sprites and Shapes

218

SOLIDMODE

Mode(s): Amiga/Blitz
Function: change Blit mode to one-colour mode
Syntax: BlitMode SolidMode

The SOLIDMODE function returns a value which may be used by one of the commands involved in
blitting modes. Using SOLIDMODE as a blitting mode will cause a shape to overwrite a section of a
BitMap corresponding to the outline of the shape.

Here is a full example which demonstrates the various blitting modes:

; *** BlitMode example
; *** Filename - BlitMode.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
RGB 0,0,0,0
RGB 1,15,0,15
Circlef 32,32,28,5
Box 15,10,49,54,6
GetaShape 0,0,0,64,64
Boxf 0,0,250,130,4
BitMapOutput 0
; *** Default mode
BlitMode CookieMode
Blit 0,0,0
; *** Erase mode
BlitMode EraseMode
Blit 0,160,0
; *** Inverse mode
BlitMode InvMode
Blit 0,0,100
; *** Solid mode
BlitMode SolidMode
Blit 0,160,100
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.Sprites and Shapes

219

8.3.3 Queue blits
The correct procedure for creating a Queue blit is as follows:

1. Define a queue using QUEUE
2. Blit the shapes using QBLIT
3. Erase the shapes using UNQUEUE

QUEUE

Mode(s): Amiga/Blitz
Statement: create a queue object
Syntax: Queue QUEUE#,ITEMS

QBLIT

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap
Syntax: QBlit QUEUE#,SHAPE#,X,Y[,EXCESS]

UNQUEUE

Mode(s): Amiga/Blitz
Statement: erase all previously QBlitted items
Syntax: Unqueue QUEUE#[,BITMAP#]

The QUEUE statement defines a queue object for use with the QBLIT and UNQUEUE statements The
ITEMS parameter specifies the maximum number of shapes the queue is capable of remembering.

QBLIT is used to draw a shape onto the currently used BitMap. It also stores the size and co-ordinates
of the shape (consult the BLIT statement for parameter information).

The UNQUEUE statement is used to erase all remembered shapes in a queue. If the optional BITMAP#
parameter is included then items may be erased by way of replacement from another BitMap.

Here's an example:

; *** QBlit example
; *** Filename - QBlit.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
Boxf 10,10,20,20,6

8.Sprites and Shapes

220

GetaShape 0,10,10,20,20
Cls 0
; *** Define a queue for 10 shapes
Queue 0,10
For X=32 To 300
 VWait
 ; *** Erase shapes
 UnQueue 0
 ; *** Draw shapes
 For Y=1 To 10
 QBlit 0,0,X,10+Y*16
 Next Y
Next X
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

FLUSHQUEUE

Mode(s): Amiga/Blitz
Statement: erase a queue
Syntax: FlushQueue QUEUE#

FLUSHQUEUE is used to erase a queue object, causing the next UNQUEUE statement to have no effect.

QBLITMODE

Mode(s): Amiga/Blitz
Statement: change QBlit mode
Syntax: QBlitMode BLTCON0

The QBLITMODE statement is used to alter the output of the QBLIT statement, when drawing shape
objects onto BitMaps. It works identically to the BLITMODE statement:

Table 8.6 : QBlit modes

BLTCON0 Description
===
CookieMode Shape drawn normally (default mode)
EraseMode Shape erases destination BitMap
InvMode Shape inversed on destination BitMap
SolidMode Shape drawn as a solid area of one colour

8.Sprites and Shapes

221

8.3.4 Buffer blits
The correct procedure for creating a Buffer blit is as follows:

1. Define a storage buffer using BUFFER

2. Blit the shapes using BBLIT

3. Erase the shapes using UNBUFFER

BUFFER

Mode(s): Amiga/Blitz
Statement: create a buffer object
Syntax: Buffer BUFFER#,LENGTH

BBLIT

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap
Syntax: BBlit BUFFER#,SHAPE#,X,Y[,EXCESS]

UNBUFFER

Mode(s): Amiga/Blitz
Statement: erase all previously BBlitted items
Syntax: UnBuffer BUFFER#

The BUFFER statement is used to create a buffer object. Buffers differ from queues in their ability to
preserve background graphics.

The LENGTH parameter specifies the memory, in bytes, to be used as temporary storage for the
preservation of background graphics. The value of this parameter varies depending upon the size and
maximum number of shapes to blit. A LENGTH of 16384 bytes (the default) should be enough, but this
may be increased if you get "Buffer Overflow" error messages.

The BBLIT statement is used to draw a shape onto the currently used BitMap, and preserve the
overwritten area into a previously initialised buffer (consult the BLIT statement for parameter
information).

UNBUFFER simply replaces areas on a BitMap overwritten by the BBLIT statement.

Here is a complete example:

8.Sprites and Shapes

222

; *** BBlit example
; *** Filename - BBlit.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
Boxf 10,10,20,20,7
GetaShape 0,10,10,20,20
Cls 0
For A=1 To 100
 Circlef Rnd(320),Rnd(200),Rnd(30)+10,Rnd(5)+1
Next A
; *** Create storage buffer
Buffer 0,16384
For X=32 To 300
 VWait
 ; *** Restore background
 UnBuffer 0
 For Y=1 To 10
 ; *** Draw shapes
 BBlit 0,0,X,10+Y*16
 Next Y
Next X
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

FLUSHBUFFER

Mode(s): Amiga/Blitz
Statement: erase a buffer
Syntax: FlushBuffer BUFFER#

FLUSHBUFFER erases a buffer, causing the next UNBUFFER statement to have no effect.

BBLITMODE

Mode(s): Amiga/Blitz
Statement: change BBlit mode
Syntax: BBlitMode BLTCON0

The BBLITMODE statement is used to alter the output of the BBLIT statement, when drawing shape
objects onto BitMaps. It works identically to the BLITMODE statement:

8.Sprites and Shapes

223

Table 8.7 : BBlit modes

BLTCON0 Description
===
CookieMode Shape drawn normally (default mode)
EraseMode Shape erases destination BitMap
InvMode Shape inversed on destination BitMap
SolidMode Shape drawn as a solid area of one colour

For example:

; *** BBlitMode example
; *** Filename - BBlitMode.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
Boxf 10,10,20,20,7
GetaShape 0,10,10,20,20
Cls 0
For A=1 To 100
 Circlef Rnd(320),Rnd(200),Rnd(30)+10,Rnd(5)+1
Next A
BBlitMode InvMode
Buffer 0,16384
For X=32 To 300
 VWait
 UnBuffer 0
 For Y=1 To 10
 BBlit 0,0,X,10+Y*16
 Next Y
Next X
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.3.5 Stencil blits
The blitting technique which we haven't covered so far is the stencil blit. Stencils allow you to move
shapes between background and foreground graphics to produce an illusion of depth.

Here is the correct procedure:

1. Draw a BitMap comprised of both foreground and background graphics.
2. Create a stencil with only the foreground graphics on it, using either STENCIL or SBLIT.
3. BBLIT the shapes.
4. Display the foreground graphics on top of the shapes using SHOWSTENCIL.

8.Sprites and Shapes

224

STENCIL

Mode(s): Amiga/Blitz
Statement: create a stencil object
Syntax: Stencil STENCIL#,BITMAP#

SHOWSTENCIL

Mode(s): Amiga/Blitz
Statement: show stencil on a BitMap
Syntax: ShowStencil BUFFER#,STENCIL#

The STENCIL statement creates a stencil object containing the contents of a BitMap.

SHOWSTENCIL is used to display the stencil object on a BitMap. Here is an example:

; *** Stencil example
; *** Filename - Stencil.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
Circlef 30,30,30,2
GetaShape 0,0,0,61,60
Cls
; *** Draw mountain background
Y=200 : LAND=3 : DI=-1
For X=0 To 320
 D=Int(Rnd(LAND))
 If D=1 Then DI=-1
 If D=2 Then DI=1
 Let Y+DI
 If Y<0 Then Y=0
 If Y>256-1 Then Y=255
 Line X,256,X,Y-10,4
Next X
; *** Store mountain in memory
Stencil 0,0
Buffer 0,16384
For X=20 To 250
 VWait
 UnBuffer 0
 ; *** Show shape
 BBlit 0,0,X,150
 ; *** Replace mountain on top
 ShowStencil 0,0
Next X

8.Sprites and Shapes

225

; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SBLIT

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap and update stencil
Syntax: SBlit STENCIL#,SHAPE#,X,Y[,EXCESS]

SBLIT works identically to the BLIT statement and also updates the specified stencil. This is an easy way
to render foreground graphics to a BitMap. Try the following example:

; *** SBlit example
; *** Filename - SBlit.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
Boxf 0,0,20,20,6
GetaShape 0,0,0,20,20
Boxf 0,0,20,20,7
GetaShape 1,0,0,20,20
Cls
; *** Set stencil
Stencil 0,0
For A=1 To 100
 Circlef Rnd(320),Rnd(256),Rnd(20)+5,Rnd(4)+1
Next A
; *** Update stencil and add shapes
For B=1 To 50
 SBlit 0,1,Rnd(280)+20,Rnd(180)+20
Next B
Buffer 0,16384
For X=20 To 300
 VWait
 UnBuffer 0
 ; *** Show shapes
 BBlit 0,0,X,50
 BBlit 0,0,X,100
 BBlit 0,0,X,150
 ; *** Replace stencil
 ShowStencil 0,0
Next X
; *** Wait for a mouse click
MouseWait

8.Sprites and Shapes

226

; *** Return to Blitz Basic 2 editor
End

SBLITMODE

Mode(s): Amiga/Blitz
Statement: change SBlit mode
Syntax: SBlitMode BLTCON0

The SBLITMODE statement is used to alter the output of the SBLIT statement, when drawing shape
objects onto BitMaps. It works identically to the BLITMODE statement:

Table 8.8 : SBlit modes

BLTCON0 Description
===
CookieMode Shape drawn normally (default mode)
EraseMode Shape erases destination BitMap
InvMode Shape inversed on destination BitMap
SolidMode Shape drawn as a solid area of one colour

8.4 Detecting Collisions
Virtually every computer game ever created uses collision detection to some extent. If the aliens didn't
explode, or the cars didn't crash then there would be little point in playing. The secret of good collision
detection lies with its accuracy: if the collision detection is too accurate then the player will die
unneccessarily, and if the detection is too lenient then the player will always win. Striking the right
balance between the two is easy with Blitz Basic and its comprehensive command set.

This entire section is devoted to the finer points of collision detection.

8.4.1 Colours and sprites
SETCOLL

Mode(s): Amiga/Blitz
Statement: set collision detection to between a screen colour and sprite
Syntax: c=SetColl COLOUR,BITPLANES[,PLAYFIELD]

This statement sets sprite/BitMap collisions to between sprites and individual screen colours. SETCOLL
allows you to specify a single colour (the COLOUR parameter) which, when present in a BitMap, and in
contact with a sprite, will cause a collision. The BITPLANES parameter specifies the number of bitplanes
in the currently used BitMap (since SETCOLL involves sprites, this figure should be either 2 or 4).
SETCOLL does not detect the actual collisions; it is used in conjunction with the PCOLL statement to
control the finer points of collision detection.

8.Sprites and Shapes

227

The optional PLAYFIELD parameter should be included when dual-playfield Slices are being used. If
PLAYFIELD is set to (1), then COLOUR refers to a colour on the foreground BitMap, and a PLAYFIELD
value of (0) refers to a colour on the background BitMap. Try the following example, in which a collision
occurs when the sprite collides with colour 15:

; *** SetColl example
; *** Filename - SetColl.bb2

BitMap 0,320,256,4
BitMapOutput 0
Boxf 0,0,7,7,3
GetaShape 0,0,0,8,8
GetaSprite 0,0
Free Shape 0
Cls
BLITZ
Slice 0,44,4
Show 0
For A=1 To 100
 Plot Rnd(320),Rnd(256),Rnd(14)+1
Next A
Boxf 80,100,250,200,15
SetColl 15,4
X=50: Y=50
X1=4 : Y1=4
Repeat
 VWait
 DoColl
 Locate 0,0
 If PColl(0)
 Print "Collision"
 Else
 Print " "
 EndIf
 ShowSprite 0,X,Y,1
 Let X+X1 : Let Y+Y1
 If X<=10 OR X>=300 Then X1=-X1
 If Y<=20 OR Y>=200 Then Y1=-Y1
Until Joyb(0)>0
; *** Return to Blitz Basic 2 editor
End

SETCOLLODD

Mode(s): Amiga/Blitz
Statement: set collision detection between odd screen colours and sprites
Syntax: SetCollOdd BITPLANES

8.Sprites and Shapes

228

The SETCOLLODD statement sets sprite/BitMap collisions to between sprites and the odd colours of the
colour palette (eg. 1,3,5,7,9 etc.). The BITPLANES parameter should be set to the number of bitplanes in
the current BitMap (either 2 or 4). Here is an example:

; *** SetCollOdd example
; *** Filename - SetCollOdd.bb2

BLITZ
BitMap 0,320,256,4
BitMapOutput 0
Slice 0,44,4
Show 0
Boxf 0,0,20,20,1
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
; *** Set odd colours to white
For COLS=1 To 16 Step 2
 RGB COLS,15,15,15
Next COLS
For A=1 To 30
 X=Rnd(320)
 Y=Rnd(200)
 Boxf X,Y,X+20,Y+20,Rnd(15)
Next A
; *** Set collision type
SetCollOdd
Mouse On
Pointer 0,0
Repeat
 VWait
 DoColl
 Locate 0,0
 ; *** Detect if white square touched
 If PColl(0)
 Print "Collision"
 Else
 Print " "
 EndIf
Until Joyb(0)>0
; *** Return to Blitz Basic 2 editor
End

SETCOLLHI

Mode(s): Amiga/Blitz
Statement: set collision detection to between upper palette and sprites
Syntax: SetCollHi BITPLANES

8.Sprites and Shapes

229

This statement sets sprite/BitMap collisions to between sprites and the upper-half of the colour palette:

Table 8.9 : The upper-half of a colour palette

Bitplanes Colours Upper-half
==============================
2 4 3+
4 16 8+

The BITPLANES parameter should be set to the number of bitplanes in the current BitMap. For example:

; *** SetCollHi example
; *** Filename - SetCollHi.bb2

BLITZ
BitMap 0,320,256,4
BitMapOutput 0
Slice 0,44,4
Show 0
Boxf 0,0,20,20,1
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
For A=1 To 8
 Circlef Rnd(320),Rnd(200),Rnd(20)+10,Rnd(9)+7
Next A
SetCollHi 4
Mouse On
Pointer 0,0
Repeat
 VWait
 DoColl
 Locate 0,0
 If PColl(0)
 Print "Collision"
 Else
 Print " "
 EndIf
Until Joyb(0)>0
; *** Return to Blitz Basic 2 editor
End

8.Sprites and Shapes

230

8.4.2 Executing collision detection
DOCOLL

Mode(s): Blitz
Statement: execute collision detection
Syntax: DoColl

The DOCOLL statement executes sprite/BitMap collision detection and must be called before each
PCOLL and SCOLL statement. Before DOCOLL can be used in conjunction with PCOLL, the type of
BitMap collisions to be detected must have been specified using either SETCOLL, SETCOLLODD or
SETCOLLHI.

Table 8.10 : The detection methods which need DoColl

Detection method DoColl?
=========================
PCOLL Y
SCOLL Y
SHAPESHIT N
BLITCOLL N
SHAPESPRITEHIT N
SPRITESHIT N
RECTSHIT N

Try the following example:

; *** DoColl example
; *** Filename - DoColl.bb2

BLITZ
BitMap 0,320,256,4
BitMapOutput 0
Slice 0,44,4
Show 0
Boxf 0,0,20,20,13
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
For A=1 To 20
 Circlef Rnd(320),Rnd(200),Rnd(20)+10,Rnd(7)+9
Next A
SetCollHi 4
For X=10 To 300
 VWait
 ShowSprite 0,X,100,0
 DoColl

8.Sprites and Shapes

231

 Locate 0,0
 If PColl(0)
 Print "Collision"
 Else
 Print " "
 EndIf
Next X
; *** Return to Blitz Basic 2 editor
End

8.4.3 Collision checking
PCOLL

Mode(s): Blitz
Function: check for collision between a particular sprite and screen colour
Syntax: p=PColl(SPRITE#)

PCOLL checks for collisions between a sprite and any BitMap graphics. If a collision has occured then
(-1) is returned, otherwise (0) is returned. PCOLL must follow a DCOLL statement. See previous example.

8.4.4 Sprite colisions
SCOLL

Mode(s): Blitz
Function: check for collision between 2 sprites
Syntax: s=SColl(SPRITE1#,SPRITE2#)

The SCOLL function returns the collision status between two sprites (SPRITE1# and SPRITE2#). If the
sprites have collided then (-1) is returned, otherwise (0) is returned. SCOLL must follow a DCOLL
statement. Example:

; *** SColl example
; *** Filename - SColl.bb2

BLITZ
BitMap 0,320,256,4
BitMapOutput 0
Slice 0,44,4
Show 0
Boxf 0,0,20,20,13
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
For A=1 To 100

8.Sprites and Shapes

232

 Plot Rnd(320),Rnd(200),Rnd(7)+9
Next A
X2=300
For X=10 To 300
 VWait
 DoColl
 ShowSprite 0,X,100,0
 ShowSprite 0,X2,100,4
 Locate 0,0
 If SColl(0,4)
 Print "BOOM!!!"
 Else
 Print " "
 EndIf
 Let X2-1
Next X
; *** Return to Blitz Basic 2 editor
End

8.4.5 Shape collisions
SHAPESHIT

Mode(s): Amiga/Blitz
Function: check for collision between 2 shapes
Syntax: ShapesHit(SHAPE1#,X1,Y1,SHAPE2#,X2,Y2)

This function returns the collision status of two rectangular shape areas. The X and Y parameters are the
coordinates of the shapes to check. If the two shapes overlap then (-1) wil be returned, otherwise (0)
will be returned. For example:

; *** ShapesHit example
; *** Filename - ShapesHit.bb2

BLITZ
BitMap 0,320,256,4
BitMapOutput 0
Slice 0,44,4
Show 0
Boxf 0,0,20,20,1
Boxf 5,5,15,15,2
GetaShape 0,0,0,20,20
Cls
For A=1 To 100
 Plot Rnd(320),Rnd(200),Rnd(7)+9
Next A
X2=300
Buffer 0,16384

8.Sprites and Shapes

233

For X=10 To 300
 VWait
 UnBuffer 0
 BBlit 0,0,X,100,0
 BBlit 0,0,X2,100,4
 Locate 0,0
 If ShapesHit(0,X,100,0,X2,100)
 Print "BOOM!!!"
 Else
 Print " "
 EndIf
 Let X2-1
Next X
; *** Return to Blitz Basic 2 editor
End

BLITCOLL

Mode(s): Amiga/Blitz
Function: return the collision status of a shape
Syntax: b=BlitColl(SHAPE#,X,Y)

The BLITCOLL function provides a fast way of testing the collision status of a shape (SHAPE#). A collision
occurs if the shape object touches any pixel on the currently used BitMap that is not of colour zero. If a
collision occurs then (-1) is returned, otherwise (0) is returned. For example:

; *** BlitColl example
; *** Filename - BlitColl.bb2

BLITZ
BitMap 0,320,256,4
BitMapOutput 0
Slice 0,44,4
Show 0
For COLS=1 To 8
 Boxf 0+COLS,0+COLS,20-COLS,20-COLS,COLS
Next COLS
GetaShape 0,0,0,20,20
Cls
For A=1 To 15
 Circlef Rnd(320),Rnd(200),Rnd(20)+10,Rnd(7)+9
Next A
Buffer 0,16384
For X=10 To 300
 VWait
 UnBuffer 0
 Locate 0,0
 If BlitColl(0,X,100)

8.Sprites and Shapes

234

 Print "Collision detected"
 Else
 Print " "
 EndIf
 BBlit 0,0,X,100,0
Next X
; *** Return to Blitz Basic 2 editor
End

8.4.6 Shape and sprite collisions
SHAPESPRITEHIT

Mode(s): Amiga/Blitz
Function: check for collision between a shape and a sprite
Syntax: s=ShapeSpriteHit(SHAPE#,X1,Y1,SPRITE#,X2,Y2)

The SHAPESPRITEHIT returns the collision status of a rectangular sprite area and a rectangular shape
area. The X and Y parameters are the coordinates of the sprite/shape to check. If the sprite and the
shape overlap then (-1) wil be returned, otherwise (0) will be returned:

; *** ShapeSpriteHit example
; *** Filename - ShapeSpriteHit.bb2

BLITZ
BitMap 0,320,256,4
BitMapOutput 0
Slice 0,44,4
Show 0
For COLS=1 To 8
 Boxf 0+COLS,0+COLS,20-COLS,20-COLS,COLS
Next COLS
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
Buffer 0,16384
X2=300
For X=10 To 300
 VWait
 UnBuffer 0
 Locate 0,0
 If ShapeSpriteHit(0,X,100,0,X2,100)
 Print "Collision detected"
 Else
 Print " "
 EndIf
 BBlit 0,0,X,100,0
 ShowSprite 0,X2,100,0

8.Sprites and Shapes

235

 Let X2-1
Next X
; *** Return to Blitz Basic 2 editor
End

8.4.7 Sprite area collisions
SPRITESHIT

Mode(s): Amiga/Blitz
Function: check for collision between 2 rectangular sprite areas
Syntax: s=SpritesHit(SPRITE1#,X1,Y1,SPRITE2#,X2,Y2)

This function returns the collision status of two rectangular sprite areas. The X and Y parameters are the
coordinates of the sprites to check. If the two sprites overlap then (-1) wil be returned, otherwise (0) will
be returned. For example:

; *** SpritesHit example
; *** Filename - SpritesHit.bb2

BLITZ
BitMap 0,320,256,4
BitMapOutput 0
Slice 0,44,4
Show 0
Boxf 0,0,20,20,13
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
For A=1 To 100
 Plot Rnd(320),Rnd(200),Rnd(7)+9
Next A
X2=300
For X=10 To 300
 VWait
 ShowSprite 0,X,100,0
 ShowSprite 0,X2,100,4
 Locate 0,0
 If SpritesHit(0,X,100,0,X2,100)
 Print "BOOM!!!"
 Else
 Print " "
 EndIf
Let X2-1
Next X
; *** Return to Blitz Basic 2 editor
End

8.Sprites and Shapes

236

8.4.8 Rectangular area collisions
RECTSHIT

Mode(s): Amiga/Blitz
Function: check for collision between 2 rectangular areas
Syntax: r=RectsHit(X1,Y1,WIDTH1,HEIGHT1,X2,Y2,WIDTH2,HEIGHT2)

The RECTSHIT function returns the collision status of two rectangular areas. X1,Y1,WIDTH1 and HEIGHT1
are the coordinates of the first rectangular area and X2,Y2,WIDTH2 and HEIGHT2 are the coordinates of
the second rectangular area. If the two areas overlap (or collide) then (-1) will be returned, otherwise (0)
will be returned. Try the following example:

; *** RectsHit example
; *** Filename - RectsHit.bb2

BLITZ
BitMap 0,320,256,4
BitMapOutput 0
Slice 0,44,4
Show 0
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
X2=300
Y2=100
For X=10 To 300
 VWait
 Locate 0,0
 If RectsHit(0,100,30+X,120,X2,Y2,X2+50,Y2+50)
 Print "Collision detected"
 MouseWait
 End
 EndIf
 Boxf 0+X,100,30+X,150,8
 Boxf X2,Y2,X2+50,Y2+50,3
 Let X2-1
Next X
; *** Return to Blitz Basic 2 editor
End

8.Sprites and Shapes

237

8.5 End-of-Chapter summary
A sprite is a graphical object which is moved by the Amiga's hardware and does not corrupt
background graphics. Sprites are initialised by either loading them from disk, or by converting a shape
object into a sprite object using the GETASPRITE statement.

Shapes are objects drawn, or blitted, by the Amiga's Blitter chip. There are three main blitting
techniques: BLIT, QBLIT and BBLIT.

Collisions between colours and sprites are defined using the SETCOLL statement.

The DOCOLL statement executes sprite/BitMap collision detection and must be called before each
PCOLL and SCOLL statement.

The SCOLL function returns the collision status between two sprites.

PCOLL checks for collisions between a sprite and any BitMap graphics.

Collisions involving shapes are tested using the SHAPESHIT and BLITCOLL functions.

Collisions between sprites are tested using SPRITESHIT.

Collisions between shapes and sprites are tested using the SHAPESPRITEHIT function.

Collisions between two rectangular areas are tested using RECTSHIT.

8.Sprites and Shapes

238

Chapter 9 : Audio

9.1 Pump up the volume
VOLUME

Mode(s): Amiga/Blitz
Statement: control sound volume
Syntax: Volume MASK,VOL1[,VOL2][,VOL3][,VOL4]

The VOLUME statement controls the volume of sound which passes through one or more of the
Amiga's four sound channels. The MASK parameter specifies which of the Amiga's four audio channels
the sound should be played through, from one to 15:

Table 9.1 : Audio masks

MASK Channel 0 Channel 1 Channel 2 Channel 3
==
1 on off off off
2 off on off off
3 on on off off
4 off off on off
5 on off on off
6 off on on off
7 on on on off
8 off off off on
9 on off off on
10 off on off on
11 on on off on
12 off off on on
13 on off on on
14 off on on on
15 on on on on

The optional VOL parameters are used to set the volume of the four audio channels. Volume settings
should be in the range zero (silence) to 64 (loudest). The first VOL parameter specifies the volume of the
first "on" audio channel, the sencond VOL for the next "on" audio channel and so on.

If any VOL parameters are not included then their associated channel will be given a volume of 64.

For example:

; *** Pump up the ...
; *** Filename - Volume.bb2

; *** Initialise sound object

239

InitSound 0,32
; *** Create sound data using sine waveform
For A=0 To 31
 SoundData 0,A,Sin(A*150)*127
Next A
; *** Play sound
LoopSound 0,1
; *** Fade out volume
For V=64 To 0 Step -1
 VWait
 Volume 1,V
Next V
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

FILTER

Mode(s): Amiga/Blitz
Statement: toggle the Amiga's low pass audio filter
Syntax: Filter On/Off

The FILTER statement is used to toggle sound distortion with the Amiga's audio filter. Some people
prefer FILTER to be set to ON, whilst other musical connaisseurs prefer it to remain OFF - it really is a
matter of preference. Here is an example:

; *** Engine sound
; *** Filename - Filter.bb2

; *** Initialise sound object
InitSound 0,32
; *** Create sound data using sine waveform
For A=0 To 31
 SoundData 0,A,Sin(A*50)*127
Next A
; *** Play sound 100 times
For B=0 To 100
 ; *** Toggle filter on
 Filter On
 ; *** Play sound
 Sound 0,15
 VWait 3
 ; *** Toggle filter off
 Filter Off
 ; *** Play sound
 Sound 0,15
Next B

9.Audio

240

; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

9.2 Rave the waves
INITSOUND

Mode(s): Amiga/Blitz
Statement: intialize a sound object
Syntax: InitSound SOUND#,LENGTH[,PERIOD[,REPEAT]]

This statement is used to initialise a sound object. Sound objects can be simple sine or square
waveforms, created with SOUNDDATA.

The LENGTH parameter specifies the length, in bytes, of the sound object. This must be less than 128K
and an even number!

The optional PERIOD parameter, if included, allows you to specify the default pitch for the sound object.

The optional REPEAT parameter is used in conjunction with the LOOPSOUND statement. It specifies a
position in the sound at which repeating should begin. Consult LOOPSOUND for more information.

Here's an example:

; *** InitSound example
; *** Filename - InitSound.bb2

; *** Initialise sound object
InitSound 0,32
; *** Create sound data using sine waveform
For A=0 To 31
 SoundData 0,A,Sin(A*2)*127
Next A
; *** Play sound (loop)
LoopSound 0,15
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

9.Audio

241

SOUNDDATA

Mode(s): Amiga/Blitz
Statement: define a wave form
Syntax: SoundData SOUND#,OFFSET,DATA

SOUNDDATA is used to define the waveform of a sound object. It alters one byte of sound data at the
specified OFFSET. The DATA parameter specifies the actual byte to be placed into the sound, and should
be in the range -128 to +127. For example:

; *** SoundData example
; *** Filename - SoundData.bb2

; *** Initialise sound object
InitSound 0,32
; *** Create sound data using a waveform
For A=0 To 31
 If A<16
 SoundData 0,A,127
 Else
 SoundData 0,A,-128
 EndIf
Next
; *** Play sound (loop)
LoopSound 0,15
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

9.3 Samples

9.3.1 Playing samples from memory
LOADSOUND

Mode(s): Amiga
Statement: load a sample into memory
Syntax: LoadSound SOUND#,"FILENAME"

This statement loads a sample into memory. The sample should be in 8SVX IFF format, otherwise an
error will be generated. Try this example:

9.Audio

242

; *** LoadSound example
; *** Filename - LoadSound.bb2

; *** Load sound sample from disk
LoadSound 0,"FILENAME.IFF"
; *** Play sound
Sound 0,1
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SOUND

Mode(s): Amiga/Blitz
Statement: play a sample from memory
Syntax: Sound SOUND#,MASK[,VOL1][,VOL2][,VOL3][,VOL4]

The SOUND statement is used to play a sample from memory. The MASK parameter specifies which of
the Amiga's four audio channels the sample should be played through, from one to 15:

Table 9.2 : Audio masks

MASK Channel 0 Channel 1 Channel 2 Channel 3
==
1 on off off off
2 off on off off
3 on on off off
4 off off on off
5 on off on off
6 off on on off
7 on on on off
8 off off off on
9 on off off on
10 off on off on
11 on on off on
12 off off on on
13 on off on on
14 off on on on
15 on on on on

The optional VOL parameters are used to set the volume of the four audio channels. Volume settings
should be in the range zero (silence) to 64 (loudest). The first VOL parameter specifies the volume of the
first "on" audio channel, the sencond VOL for the next "on" audio channel and so on.

If any VOL parameters are not included then their associated channel will be given a volume of 64.

9.Audio

243

For example, the following syntax is used:

Sound 0,12,32,64

This would cause channels zero and one to be "off", and channels two and three to be "on". Because
channels two and three are the first "on" channels, channel two would be given a volume setting of 32,
and channel three a setting of 64.

If this syntax was used instead then channel three would be set to 32, as it is the only "on" audio
channel:

Sound 0,8,32

Here is a full example:

; *** A Sound example
; *** Filename - Sound.bb2

; *** Load sound sample from disk
LoadSound 0,"FILENAME.IFF"
; *** Play sound
; *** (Channels 1 and 2 are half volume)
; *** (Channels 3 and 4 are full volume)
Sound 0,15,32,32,64,64
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

LOOPSOUND

Mode(s): Amiga/Blitz
Statement: play and loop a sample from memory
Syntax: LoopSound SOUND#,MASK[,VOL1][,VOL2][,VOL3][,VOL4]

This statement works identically to SOUND, except the sample will loop. Consult the LOADSOUND
statement for parameter information. For example:

; *** LoopSound
; *** Filename - LoopSound.bb2

; *** Load sound sample from disk
LoadSound 0,"FILENAME.IFF"

9.Audio

244

; *** Play sound (loop)
LoopSound 0,15
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

9.3.2 Playing samples from disk
DISKPLAY

Mode(s): Amiga
Statement: play a sample straight from disk
Syntax: DiskPlay "FILENAME",MASK[,VOL1][,VOL2][,VOL3][,VOL4]

The DISKPLAY statement is used to play an 8SVX IFF sound sample straight from disk. It suspends
program execution until the sample has stopped playing. DISKPLAY allows samples of any length,
whereas LOADSOUND restricts its samples to 128K in length. Consult the LOADSOUND statement for
parameter information. Example:

; *** DiskPlay example
; *** Filename - DiskPlay.bb2

; *** Load sound sample from disk and play
DiskPlay "FILENAME.IFF",1,64
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

9.3.3 Manipulating samples
DISKBUFFER

Mode(s): Amiga/Blitz
Statement: set size of DiskPlay memory buffer
Syntax: DiskBuffer LENGTH

This is used to set the size of the DISKPLAY memory buffer. The buffer is initially set to 1024 bytes,
although this may be increased or decreased as needed. However, decreasing the memory buffer may
cause a loss in sound quality. Here's an example:

9.Audio

245

; *** DiskBuffer example
; *** Filename - DiskBuffer.bb2

F$="A SAMPLE"
; *** Play sample normally
DiskPlay F$,15
; *** Wait for a mouse click
MouseWait
; *** Reduce buffer
DiskBuffer 128
; *** Play sample again (altered)
DiskPlay F$,15
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

PEEKSOUND

Mode(s): Amiga/Blitz
Function: return the byte of a sample
Syntax: PeekSound SOUND#,OFFSET

PEEKSOUND returns the byte of a sample at the specified offset of a sound object. For example:

; *** PeekSound example ** Filename - PeekSound.bb2
; *** Initialise sound object
InitSound 0,32
For A=0 To 31
 ; *** Set first half to max byte
 If A<16
 SoundData 0,A,127
 Else
 ; *** Set second half to min byte
 SoundData 0,A,-128
 EndIf
Next A
; *** Output all sample bytes
For B=0 To 31
 NPrint PeekSound(0,B)
Next B
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

9.Audio

246

9.4 Playing Tracker modules
A Tracker is a sequencing program which allows you to enter musical motes and arrange them to create
a song, or module. The standard Tracker program on the Amiga is the Public Domain package
Protracker. Protracker is based on the ageing Soundtracker program, a commercial piece of software
which was unwittingly released into the Public Domain.

The latest version of Protracker is available from 17 Bit Software, at the following address:

17 Bit Software
1st Floor Offices
2/8 Market Street
Wakefield
West Yorkshire
WF1 1DH
Tel: (01924) 366982

LOADMODULE

Mode(s): Amiga
Statement: load a Tracker module
Syntax: LoadModule MODULE#,"FILENAME"

PLAYMODULE

Mode(s): Amiga/Blitz
Statement: play a Tracker module
Syntax: PlayModule MODULE#

To load a Tracker module into memory, use this statement. The MODULE# parameter is a unique
identification value. This allows you to store more than one module in memory at once.

The PLAYMODULE statement is used to start a Tracker module playing from memory. MODULE# is the
number of the module to play. For example:

; *** Loading a tracker module
; *** Filename - LoadModule.bb2

; *** Open a basic screen
Screen 0,3,"Module Master..."
; *** Load Tracker module from disk
LoadModule 0,"FILENAME.MOD"
; *** Start the module playing
PlayModule 0
; *** Wait for a mouse click
MouseWait

9.Audio

247

; *** Return to Blitz Basic 2 editor
End

STOPMODULE

Mode(s): Amiga/Blitz
Statement: stop all Tracker modules
Syntax: StopModule

The STOPMODULE statement is used to stop ALL Tracker modules currently being played.

FREE MODULE

Mode(s): Amiga/Blitz
Statement: erase a Tracker module from memory
Syntax: Free Module MODULE#

If you want to disguard a Tracker module from memory then use this statement. The MODULE#
parameter specifies a module to erase. For example:

; *** Stop!
; *** Filename - StopModule.bb2

; *** Open another screen
Screen 0,3,"Module Master..."
; *** Load Tracker module from disk
LoadModule 0,"FILENAME.MOD"
; *** Start module playing
PlayModule 0
; *** Wait for a mouse click
MouseWait
; *** Stop module from playing
StopModule
; *** Remove module from memory
Free Module 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

9.Audio

248

9.5 Med modules
Med, or more recently OctaMed, is a superior music Tracker. Med modules are created in much the
same way as Tracker ones, by playing notes on the Amiga's keyboard. Each note can be a different
sample, and patterns of up to 64 steps can be created and pasted together to form a musical
masterpiece.

Other notable options include:

Sample editor
Synthesised sound editor
MIDI support
On-line help

The latest incarnation of Med, namely OctaMed Pro V5, allows you to enter eight tracks of audio
instead of four. This is achieved by playing two samples out of each audio channel. However, Blitz Basic
does not currently support eight channel modules, so you are advised to stick with four.

OctaMed Pro V5 requires Kickstart 2.04 or later, and is available through Seasoft Computing, priced
£30.00, from the following address:

Seasoft Computing Unit 3 Martello Enterprise Centre Courtwick Lane Littlehampton West Sussex
England BN17 7PA Tel: (01903) 850378

9.5.1 Playing Med modules
LOADMEDMODULE

Mode(s): Amiga
Statement: load a Med module
Syntax: LoadMedModule MODULE#,"FILENAME"

The LOADMEDMODULE statement loads any four channel OctaMed module. The following commands
support upto and including version 3 of the Amiganuts Med standard.

STARTMEDMODULE

Mode(s): Amiga/Blitz
Statement: initialise a Med module in memory
Syntax: StartMedModule MODULE#

STARTMEDMODULE is responsible for initialising the module including linking after it is loaded from
disk using the LOADMEMODULE statement. It can also be used to restart a module from the beginning.

9.Audio

249

PLAYMED

Mode(s): Amiga/Blitz
Statement: play a Med module
Syntax: PlayMed

The PLAYMED statement plays the current Med module. It must be called every 50th of a second, either
on an interrupt (#5), or after a VWAIT statement.

STOPMED

Mode(s): Amiga/Blitz
Statement: stop the current Med module
Syntax: StopMed

STOPMED will cause any Med module to stop playing.

Here is a full example which demonstrates the correct procedure for loading and playing a Med
module:

; *** Playing a Med module
; *** Filename - PlayMed.bb2

; *** Load Med module from disk
LoadMedModule 0,"MED_MODULE"
; *** Initialise Med module
StartMedModule 0
Repeat
 ; *** Play module every 50Hz
 VWait
 PlayMed
Until Joyb(0)>0
; *** Stop module from playing
StopMed
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

9.Audio

250

9.5.2 Manipulating Med modules
SETMEDVOLUME

Mode(s): Amiga/Blitz
Statement: set the volume of a Med module
Syntax: SetMedVolume VOLUME

The SETMEDVOLUME statement changes the volume of a Med module. All music channels are affected
by this statement. For example:

; *** Music fading
; *** Filename - SetMedVolume.bb2

; *** Load Med module from disk
LoadMedModule 0,"MED_MODULE"
; *** Initialise Med module
StartMedModule 0
Repeat
 ; *** Play module every 50Hz
 VWait
 PlayMed
Until Joyb(0)>0
; *** Fade out module volume
For A=64 To 1 Step -1
 VWait
 PlayMed
 SetMedVolume A
Next A
; *** Stop module from playing
StopMed
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

GETMEDVOLUME

Mode(s): Amiga/Blitz
Function: return the current volume setting of an audio channel
Syntax: g=GetMedVolume(CHANNEL)

This function returns the current volume setting of the specified audio channel. GETMEDVOLUME may
be used to create graphic equalisers that move in time with the music. Try the following example:

9.Audio

251

; *** GetMedVolume example
; *** Filename - GetMedVolume.bb2

; *** Load Med module from disk
LoadMedModule 0,"MED_MODULE"
; *** Initialise Med module
StartMedModule 0
Repeat
 ; *** Play module every 50Hz
 VWait
 PlayMed
 ; *** Output volume of channel 0
 If Int(Rnd(100))=0
 A=GetMedVolume(0)
 NPrint "Volume 0 = ",A
 EndIf
Until Joyb(0)>0
; *** Stop module from playing
StopMed
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SETMEDMASK

Mode(s): Amiga/Blitz
Statement: mask a Med audio channel
Syntax: SetMedMask CHANNEL

SETMEDMASK allows the user to mask out an audio channel. The CHANNEL parameter specifies the
number of a channel to mask, or silence. Try the following example:

; *** Masking example
; *** Filename - SetMedMask.bb2

; *** Load Med module from disk
LoadMedModule 0,"MED_MODULE"
; *** Initialise Med module
StartMedModule 0
; *** Mask all channels except channel 3
SetMedMask 0
SetMedMask 1
SetMedMask 2
Print "Channel 3 playing only"
Repeat
 ; *** Play module every 50Hz

9.Audio

252

 VWait
 PlayMed
Until Joyb(0)>0
; *** Stop module from playing
StopMed
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

JUMPMED

Mode(s): Amiga/Blitz
Statement: change pattern being played in current Med module
Syntax: JumpMed PATTERN

The JUMPMED statement is used to change the pattern being played in the current Med module. This is
useful if you want the music to change in your games at different points. Say, for example, that you
wanted a short piece of music to play once the player completed the game. You would write the music
so that a few patterns (the end-game piece) are never played by the main module. These could then be
jumped to, when required, by the JUMPMED statement. Here is an example:

; *** JumpMed example
; *** Filename - JumpMed.bb2

; *** Load Med module from disk
LoadMedModule 0,"MED_MODULE"
; *** Initialise Med module
StartMedModule 0
Repeat
 ; *** Play module every 50Hz
 VWait
 PlayMed
 ; *** Jump between module patterns
 If Int(Rnd(100))=0
 A=Int(Rnd(10)+1)
 NPrint "Jumping to pattern ",A
 JumpMed A
 EndIf
Until Joyb(0)>0
; *** Stop module from playing
StopMed
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

9.Audio

253

GETMEDNOTE

Mode(s): Amiga/Blitz
Function: return current note playing through a channel
Syntax: n=GetMedNote(CHANNEL)

This function returns the current note playing through the specified audio channel. Here is an example:

; *** GetMedNote example
; *** Filename - GetMedNote.bb2

; *** Load Med module from disk
LoadMedModule 0,"MED_MODULE"
; *** Initialise Med module
StartMedModule 0
Repeat
 ; *** Play module every 50Hz
 VWait
 PlayMed
 ; *** Output current note (channel 0)
 A=GetMedNote(0)
 Print A
Until Joyb(0)>0
; *** Stop module from playing
StopMed
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

GETMEDINSTR

Mode(s): Amiga/Blitz
Function: return current instrument playing through a channel
Syntax: i=GetMedInstr(CHANNEL)

GETMEDINSTR returns the current instrument playing through the specified audio channel:

; *** GetMedInstr example
; *** Filename - GetMedInstr.bb2

; *** Load Med module from disk
LoadMedModule 0,"MED_MODULE"
; *** Initialise Med module
StartMedModule 0

9.Audio

254

Repeat
 ; *** Play module every 50Hz
 VWait
 PlayMed
 ; *** Output instrument in a given channel
 If Int(Rnd(100))=0
 A=Int(Rnd(3)+1)
 B=GetMedInstr(A)
 NPrint "Instrument (channel ",A,") = ",B
 EndIf
Until Joyb(0)>0
; *** Stop module from playing
StopMed
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

9.6 Speech
One of the fun utilities provided with the Amiga was the narrator device; this allowed pre-AGA Amigas
to "talk". For reasons known only to themselves, Commodore chose to remove the "speech" facility
from Workbench 3.

A recent update has added speech to Blitz Basic 2, so that owners of all Amigas (including those
equipped with the AGA chipset) can access this fabulous facility through BASIC.

9.6.1 Walkie Talkie
SPEAK

Mode(s): Amiga
Statement: speak a string
Syntax: Speak TEXT$

The SPEAK statement is used to pass a string of phonemes to the Amiga's voice synthesizer. SPEAK
automatically converts any string to phonetics, so you don't need to worry about getting your hands
dirty with the translation. Here is an example:

; *** Speak demo
; *** Filename - Speak.bb2

Repeat
 NPrint ""
 ; *** Input a string to speak
 NPrint "Please input some stuff:>"
 A$=Edit$(70)
 ; *** Talk!!!

9.Audio

255

 Speak A$
Until A$=""
; *** Return to Blitz Basic 2 editor
End

SETVOICE

Mode(s): Amiga
Statement: set style of speech
Syntax: SetVoice RATE,PITCH,EXPRESSION,SEX,VOLUME,FREQUENCY

SETVOICE can be used to alter the style of speech by changing the rate, pitch, expression, sex, volume
and frequency of the Amiga's voice synthesizer:

Table 9.3 : SETVOICE parameters

Parameter Description Range Default
===
RATE Words per minute 40-400 150
PITCH Baseline pitch in Hz 65-320 110
EXPRESSION 0=robot 1=natural 2=manual 0-2 1
SEX 0=male 1=female 0-1 0
VOLUME Volume 0-64 64
FREQUENCY Samples per second 0-22,200 22,200

Here is an example:

; *** A fine voice
; *** Filename - SetVoice.bb2

; *** Toggle audio filter on
Filter On
Repeat
 NPrint ""
 ; *** Input a string to speak
 NPrint "Enter some words or numbers to spell:>"
 A$=Edit$(70)
 A=1
 For B=0 To Len(A$)
 ; *** Split up string into characters
 B$=Mid$(A$,A,1)
 Let A+1
 VWait 5
 ; *** Alter audio voice randomly
 RATE=40+Rnd(360)
 PITCH=65+Rnd(255)
 SEX=Rnd(1)

9.Audio

256

 SetVoice RATE,PITCH,1,SEX,64,22200
 ; *** Speak next letter of string
 Speak B$
 Next B
 ; *** Speak entire string
 Speak A$
Until A$=""
; *** Return to Blitz Basic 2 editor
End

9.6.2 It's a foreign language
TRANSLATE$

Mode(s): Amiga
Function: return the phonetic equivalent of a string
Syntax: phonetic$=Translate$(TEXT$)

TRANSLATE$ returns the phonetic equivalent of a string. For example:

; *** Translate$ example
; *** Filename - Translate$.bb2

NPrint ""
NPrint "Enter a sentence:"
A$=Edit$(70)
NPrint"Phonetic =",Translate$(A$)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

PHONETICSPEAK

Mode(s): Amiga
Statement: speak a phonetic string
Syntax: PhoneticSpeak TEXT$

This statement is identical to the SPEAK statement, except the string to speak must contain legal
phonemes. TEXT$ should be created by the TRANSLATE$ function. Try the following example:

9.Audio

257

; *** PhoneticSpeak example
; *** Filename - PhoneticSpeak.bb2

NPrint ""
NPrint "Enter a sentence:"
A$=Edit$(70)
PhoneticSpeak Translate$(A$)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

9.6 End-of-Chapter summary
The VOLUME statement controls the volume of sound which passes through one or more of the
Amiga's four sound channels.

The FILTER statement is used to toggle sound distortion with the Amiga's audio filter.

INITSOUND and SOUNDDATA are used to create sound data from scratch.

Sound samples are played using LOADSOUND, SOUND and LOOPSOUND. Samples can be played
straight from disk using the DISKPLAY statement.

Blitz Basic can play Tracker modules and four channel Med, or OctaMed, modules.

The Amiga can be made to "talk" using the SPEAK statement, and the style of this speech can be altered
using SETVOICE.

9.Audio

258

Chapter 10 : Screens
This chapter explains how Intuition screens are created and manipulated by Blitz Basic 2.

A screen is an area of the display that shares the same attributes, such as size, resolution and colours.

The Amiga can have several screens open at once. However, unlike Slices, there are no limits placed
upon how multiple screens may be arranged. Multiple screens can be positioned vertically on top of
each other and may overlap.

10.1 Defining a screen
SCREEN

Mode(s): Amiga
Statement: open an Intuition screen
Syntax: Screen SCREEN#,MODE[,TITLE$]
Syntax 2: Screen SCREEN#,X,Y,W,H,MODE,VIEWMODE,T$,D,B[,BITMAP#]

10.1.1 Syntax 1
The SCREEN statement is used to open an Intuition screen. The first syntax uses three parameters:
SCREEN# (the screen number), MODE and the optional TITLE$ parameter.

The MODE parameter specifies the number of bitplanes for the screen, ranging from (1) to (6). The
value you specify determines the number of colours that can be displayed on the screen, as shown in
the following table (AGA screen modes are not currently supported by Blitz Basic 2):

Table 10.1 : Number of colours per bitplane

Bitplanes Colours
==================
1 2
2 4
3 8
4 16
5 32
6 64

As with Slices, high-resolution screens can be opened by adding eight to this figure. High-resolution
screens may use a maximum of four bitplanes (16 colours). Adding 16 to the MODE parameter creates
an interlaced screen.

Note that the height of the screen will be 256 pixels on a PAL Amiga, or 200 pixels on an NTSC Amiga.

259

Here are some examples:

; *** Screen example 1
; *** Filename - Screen1.bb2

; *** Untitled low-res screen (3 bitplanes)
Screen 0,3
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Screen example 2
; *** Filename - Screen2.bb2

; *** Titled hi-res screen (2 bitplanes)
Screen 0,10,"Blitz"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

10.1.2 Syntax 2
The second SCREEN syntax is more involved and requires more parameters to operate:

Table 10.2 : SCREEN parameters

Parameter Function
==
X Horizontal position of top-left of screen
Y Vertical position of top-left of screen
W Width of screen (at least 320)
H Height of screen
MODE Number of bitplanes (up to 6 - 64/4096 colours)
VIEWMODE Screen ViewMode
T$ Screen title
D Detail pen colour
B Block pen colour
[BITMAP#] Attach BitMap to a screen

It is worth mentioning that screen widths must be a multiple of 16 and they are always at least the full
width of the viewable area (a minimum of 320 pixels). The height of the screen will be 256 pixels on a
PAL Amiga, or 200 pixels on an NTSC Amiga.

10.Screens

260

All of the other parameters are self-explanatory, except perhaps for VIEWMODE. VIEWMODE is a special
parameter which enables the Blitz Basic programmer to create Half-Brite, HAM, Interlaced, High-
resolution and Super-hi-res screens.

Table 10.3 : Screen ViewModes

VIEWMODE Description
===
$0000 Low-res
$0004 Interlace
$0080 Half-brite
$0800 HAM
$8000 Hi-res
$8020 Super-hi-res (AGA only - max 2 bitplanes)

; *** Low-resolution Screen example
; *** Filename - LowResScreen.bb2

Screen 0,0,100,320,100,3,$0000,"Low-res",1,2
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Hi-resolution Screen example
; *** Filename - HiResScreen.bb2

Screen 0,0,0,640,200,4,$8000,"Hi-res",1,0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Super-hi-res Screen example
; *** Filename - SuperHiresScreen.bb2

Screen 0,0,0,1280,256,2,$8020,"Super-hi-res",1,0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

10.Screens

261

10.1.3 Interlaced screens
Interlaced screens have twice the number of vertical lines as low-resolution screens. Like low-resolution
mode, interlace format allows up to 64 colours to be displayed. However, interlaced screens induce
flicker on some computer screens (use a multi-sync monitor to avoid this):

; *** Interlaced Screen example
; *** Filename - InterlacedScreen.bb2

Screen 0,0,0,320,200,3,$0004,"Interlace",1,0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

10.1.4 Extra Half-Brite
Usually known as just "Half-Brite", this is a special display mode which doubles the number of colours
on screen by dublicating the existing palette at half its brightness. This doubles the number of available
screen colours to 64:

; *** Half-Brite Screen example
; *** Filename - HalfBriteScreen.bb2

Screen 0,0,0,320,200,6,$0080,"Half-Brite",1,0
ScreensBitMap 0,0
For A=0 To 31
 Boxf 10,22+X,30,24+X,A
 Boxf 60,22+X,80,24+X,A+32
 Let X+5
Next
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

10.1.5 Hold And Modify
The Hold And Modify display mode (HAM) uses only 16 colour registers, but manages to display the full
Amiga colour palette - all 4096 colours on the screen at the same time. A HAM colour is formed by
taking the RGB value of the preceding pixel on the screen, and substituting a new value for one of the
RGB components:

10.Screens

262

; *** HAM Screen example
; *** Filename - HAMScreen.bb2

Screen 0,0,0,320,200,6,$0800,"HAM",1,0
ScreensBitMap 0,0
For X=1 To 81
 For A=0 To 50
 Boxf 1+X,12+Y,13+X,17+Y,A
 Let Y+4
 Next
 Let X+9
 Y=0
Next
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

10.1.6 Screen BitMaps
Screens can also display graphics from a previously initialised BitMap, by the inclusion of the optional
BITMAP# parameter. This is of use when the BitMap graphics have been created BEFORE the screen
definition.

The SCREENSBITMAP statement can be used to attach BitMap graphics to a screen AFTER it has been
opened (consult Chapter 6 for more information):

; *** Screen example 2
; *** Filename - Screen2.bb2

; *** Define BitMap (3 bitplanes)
BitMap 0,320,256,3
; *** Draw BitMap graphics
For A=1 To 50
 Circlef Rnd(320),Rnd(150)+50,Rnd(20)+10,Rnd(5)+1
Next A
; *** Open screen and attach BitMap
Screen 0,0,0,320,DispHeight,3,0,"Title",1,0,0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

10.Screens

263

10.2 Controlling screens
CLOSESCREEN

Mode(s): Amiga
Statement: close a screen
Syntax: CloseScreen SCREEN#

As its name implies, CLOSESCREEN closes the specified screen and removes it from the display:

; *** CloseScreen example
; *** Filename - CloseScreen.bb2

; *** Open screen
Screen 0,1,"Closing down..."
; *** Pause briefly
VWait 50
; *** Remove screen from display
CloseScreen 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

10.3 Screen priority
As multiple screens are opened, they are positioned in front of one another. The following commands
can be used to affect screen priority.

HIDESCREEN

Mode(s): Amiga
Statement: move a screen to back of display
Syntax: HideScreen SCREEN#

The HIDESCREEN statement moves the specified screen to the back of the current display. It places it
behind all other opened screens. Try the following example:

; *** HideScreen example
; *** Filename - HideScreen.bb2

; *** Open screen
Screen 0,2,"Hide and seek"
; *** Pause briefly
VWait 100

10.Screens

264

; *** Move screen to back of display
HideScreen 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SHOWSCREEN

Mode(s): Amiga
Statement: show a screen
Syntax: ShowScreen SCREEN#

SHOWSCREEN moves the specified screen to the front of the current display. For example:

; *** ShowScreen example
; *** Filename - ShowScreen.bb2

; *** Open 2 screens
Screen 0,2,"Back"
Screen 1,10,"Front"
For A=1 To 5
 ; *** Pause briefly
 VWait 50
 ; *** Toggle screen priority
 SCR=1-SCR
 ShowScreen SCR
Next A
; *** Return to Blitz Basic 2 editor
End

10.4 Manipulating screens
MOVESCREEN

Mode(s): Amiga
Statement: move a screen
Syntax: MoveScreen SCREEN#,X,Y

MOVESCREEN is used to move a screen about the current display. The X and Y parameters specify the
amount for the screen to be moved. Here are some examples:

10.Screens

265

; *** MoveScreen example
; *** Filename - MoveScreen.bb2

; *** Open screen
Screen 0,2,"Going down..."
; *** Move screen down display
For Y=1 To 30
 MoveScreen 0,0,Y
Next Y
; *** Return to Blitz Basic 2 editor
End

BEEPSCREEN

Mode(s): Amiga
Statement: flash screen
Syntax: BeepScreen SCREEN#

The BEEPSCREEN statement flashes a specified screen (SCREEN#). That's it! Try the following example:

; *** BeepScreen example
; *** Filename - BeepScreen.bb2

; *** Open screen
Screen 0,2,"Flasher"
; *** Pause briefly
VWait 50
; *** Flash screen 5 times
For A=1 To 5
 BeepScreen 0
 VWait 50
Next A
; *** Return to Blitz Basic 2 editor
End

WBTOSCREEN

Mode(s): Amiga
Statement: assign the Workbench screen to a screen object number
Syntax: WbToScreen SCREEN#

The WBTOSCREEN statement assigns the Workbench screen a screen number. This allows you to
perform any of the screen functions on the Workbench screen. Upon execution, the Workbench screen

10.Screens

266

becomes the current screen. For example:

; *** WbToScreen example
; *** Filename - WbToScreen.bb2

; *** Assign Workbench screen for manipulation
WbToScreen 0
; *** Pause briefly
VWait 100
; *** Flash screen
BeepScreen 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

FINDSCREEN

Mode(s): Amiga
Statement: assign an object number to a screen
Syntax: FindScreen SCREEN#[,TITLE$]

This statement will search for a screen and give it an object number. If the optional TITLE$ parameter is
specified then a screen that has this name will be searched for, otherwise the front screen will be given
the object number SCREEN#. If the screen is found then it becomes the current screen. Here is an
example:

; *** FindScreen!
; *** Filename - FindScreen.bb2

; *** Search for screen 0
FindScreen 0
; *** Open window on found screen
Window 0,0,0,100,100,0,"Found it!",0,1
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SHOWBITMAP

Mode(s): Amiga
Statement: show a BitMap on a screen
Syntax: ShowBitMap [BITMAP#]

10.Screens

267

The SHOWBITMAP statement is used to display a BitMap on the current screen. It is a system-friendly
version of the Slice SHOW statement. This allows the Blitz Basic programmer to create double-buffered
animations on Intuition screens. Here is an example:

; *** ShowBitmap example
; *** Filename - ShowBitmap.bb2

; *** Open BitMap (3 bitplanes)
BitMap 0,320,DispHeight,3
; *** Plot random starfield on BitMap
For A=1 To 200
 Plot Rnd(320),Rnd(DispHeight),Rnd(5)+1
Next A
; *** Open screen
Screen 0,3
; *** Alter screen's palette
RGB 0,0,0,0
; *** Attach BitMap to screen
ShowBitMap 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SCREENPENS

Mode(s): Amiga
Statement: configure the 10 default pens used for system gadgets
Syntax: ScreenPens(TEXT,SHINE,SHADOW,FILL,TEXT,BACK,HIGHLIGHT)

The SCREENPENS statement is used to configure the 10 default pens used for system gadgets in
Workbench 2.0/3.0. All screens opened after the SCREENPENS statement will use these pens. Try the
following example which brightens up the dullest of Intuition screens:

; *** ScreenPens example
; *** Filename - ScreenPens.bb2

; *** Set screen pens
ScreenPens 1,2,3,4,5,6,7
Screen 0,3,"Hello"
; *** Simple text gadget
TextGadget 0,30,30,0,0,"Click on me"
; *** Open window and attach gadget
Window 0,0,20,300,200,0,"Window",1,2,0
; *** Output defined colours
WLocate 0,6
For A=1 To 7

10.Screens

268

 WColour A
 NPrint A
Next A
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

10.5 Screen functions
SMOUSEX

Mode(s): Amiga
Function: return horizontal mouse position relative to left edge of screen
Syntax: x=SMouseX

The SMOUSEX function returns the horizontal mouse position relative to the left edge of the currently
used screen:

; *** SMouseX example
; *** Filename - SMouseX.bb2

; *** Open simple screen
Screen 0,3,"Mouse co-ords"
; *** Grab screen's BitMap
ScreensBitMap 0,0
; *** Enable text output onto BitMap
BitMapOutput 0
; *** Alter screen's palette
PalRGB 0,0,0,0,0
Use Palette 0
Repeat
 ; *** Return horizontal location of mouse
 Locate 0,2 : Print "X=",SMouseX," "
Until Joyb(0)>0
; *** Return to Blitz Basic 2 editor
End

SMOUSEY

Mode(s): Amiga
Function: return vertical mouse position relative to top of screen
Syntax: y=SMouseY

10.Screens

269

The SMOUSEY function returns the vertical mouse position relative to the top of the currently used
screen. For example:

; *** SMouseY example
; *** Filename - SMouseY.bb2

; *** Open simple screen
Screen 0,3,"Mouse co-ords"
; *** Grab screen's BitMap
ScreensBitMap 0,0
; *** Enable text output onto BitMap
BitMapOutput 0
; *** Alter screen's palette
PalRGB 0,0,0,0,0
Use Palette 0
Repeat
 ; *** Return vertical location of mouse
 Locate 0,2 : Print "Y=",SMouseY," "
Until Joyb(0)>0
; *** Return to Blitz Basic 2 editor
End

VIEWPORT

Mode(s): Amiga
Function: return the location of screen's ViewPort
Syntax: v=ViewPort(SCREEN#)

VIEWPORT is used to return the location of a screen's ViewPort. The ViewPort address can be used in
conjunction with the Amiga's system libraries:

; *** ViewPort Example
; *** Filename - ViewPort.bb2

; *** Use Workbench screen
WbToScreen 0
; *** Output scren's ViewPort
NPrint ViewPort(0)
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

10.Screens

270

10.6 IFF screens
IFF stands for Interchangeable File Format. Devised by Electronic Arts, it has been adopted as the
standard way of storing pictures and sound on the Amiga.

This section deals with the IFF graphics which can be created with paint packages, such as Deluxe Paint
IV.

10.6.1 Loading and saving screens
LOADSCREEN

Mode(s): Amiga
Statement: load a screen into a screen object
Syntax: LoadScreen SCREEN#,"FILENAME.IFF"[,PALETTE#]

LOADSCREEN is used to load an IFF picture ("FILENAME.IFF") into the screen specified by SCREEN#. If
the optional PALETTE# parameter is included then the picture's palette will be loaded into that palette
object. For example:

; *** LoadScreen example
; *** Filename - LoadScreen.bb2

; *** Open screen (32 colours)
Screen 0,5,"Left mouse button exits"
; *** Load screen and palette
LoadScreen 0,"FILENAME.IFF",0
; *** Attach palette to screen
Use Palette 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

SAVESCREEN

Mode(s): Amiga
Statement: save a screen to disk
Syntax: SaveScreen SCREEN#,"FILENAME.IFF"

The SAVESCREEN statement saves a screen (SCREEN#) to disk as an IFF picture file ("FILENAME.IFF"):

10.Screens

271

; *** SaveScreen example
; *** Filename - SaveScreen.bb2

; *** Open screen and attach BitMap
Screen 0,3,"SaveScreen example"
ScreensBitMap 0,0
; *** Alter screen's palette
PalRGB 0,0,0,0,0
Use Palette 0
; *** Plot a random starfield
For A=1 To 100
 Plot Rnd(320),Rnd(200)+30,Rnd(6)+1
Next A
; *** Save IFF file
SaveScreen 0,"df0:STARS.IFF"
Cls 0
VWait 20
; *** Load new file
LoadScreen 0,"df0:STARS.IFF"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

10.6.2 ILBM
ILBM stands for InterLeaved BitMap - think of it as a posh name for an IFF file. The following commands
are used to obtain information about IFF files, including size, number of colours and resolution.

ILBMINFO

Mode(s): Amiga
Statement: initialize a file for ILBM examination
Syntax: ILBMInfo "FILENAME"

Before an ILBM file can be investigated, it first has to be initialized using the ILBMINFO statement. The
"FILENAME" parameter is the name of the file to examine:

; *** ILBMInfo example
; *** Filename - ILBMInfo.bb2

; *** IFF filename
F$="FILENAME.IFF"
; *** Initialize file
ILBMInfo F$
; *** Wait for a mouse click
MouseWait

10.Screens

272

; *** Return to Blitz Basic 2 editor
End

ILBMWIDTH

Mode(s): Amiga
Function: return the width of an ILBM image
Syntax: w=ILBMWidth

This function returns the width of an initialized ILBM image, in pixels:

; *** ILBMWidth example
; *** Filename - ILBMWidth.bb2

; *** IFF filename
F$="FILENAME.IFF"
; *** Initialize file
ILBMInfo F$
; *** Output picture's width
NPrint ILBMWidth," pixels"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

ILBMHEIGHT

Mode(s): Amiga
Function: return the height of an ILBM image
Syntax: h=ILBMHeight

ILBMHEIGHT returns the hieght of an initialized ILBM image, in pixels:

; *** ILBMHeight example
; *** Filename - ILBMHeight.bb2

; *** IFF filename
F$="FILENAME.IFF"
; *** Initialize file
ILBMInfo F$
; *** Output picture's height
NPrint ILBMHeight," pixels"
; *** Wait for a mouse click
MouseWait

10.Screens

273

; *** Return to Blitz Basic 2 editor
End

ILBMDEPTH

Mode(s): Amiga
Function: return the depth of an ILBM image
Syntax: d=ILBMDepth

The ILBMDEPTH statement returns the depth of an ILBM image, in bitplanes:

; *** ILBMDepth example
; *** Filename - ILBMDepth.bb2
; *** IFF filename
F$="FILENAME.IFF"
; *** Initialize file
ILBMInfo F$
; *** Output picture's depth
NPrint ILBMDepth," bitplanes"
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

ILBMVIEWMODE

Mode(s): Amiga/Blitz
Statement: return the viewmode of an ILBM file
Syntax: ILBMViewMode

ILBMViewMode returns the ViewMode, or resolution, of the file that was processed by ILBMInfo. This is
useful for opening a screen in the right mode before using LOADSCREEN. The different values of
ILBMVIEWMODE are as follows:

Table 10.4 : Values returned by ILBMVIEWMODE

Value Description
=========================
32768 ($8000) Hi-res
2048 ($0800) HAM
128 ($0080) Half-Brite
4 ($0004) Interlaced
0 ($0000) Low-res

10.Screens

274

Here is an example:

; *** ILBMViewMode example
; *** Filename - ILBMViewMode.bb2

; *** IFF filename
F$="FILENAME.IFF"
; *** Initialize file
ILBMInfo F$
; *** Output picture's ViewMode
NPrint ILBMViewMode
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

Here is a full example which demonstrates the use of the Blitz Basic ILBM commands in the opening of
screens:

; *** A thorough examination
; *** Filename - ILBM.bb2

; *** Analyse IFF file
F$="FILENAME.IFF"
ILBMInfo F$
; *** Open screen to file specifications
Screen 0,0,0,ILBMWidth,ILBMHeight,ILBMDepth,ILBMViewMode,"",1,2
; *** Load file
LoadScreen 0,F$,0
Use Palette 0
; *** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

10.Screens

275

10.7 End-of-Chapter summary
A screen is an area of the display that shares the same attributes, such as size, resolution and colours.

Screen widths must be a multiple of 16 and they are always at least the full width of the viewable area
(a minimum of 320 pixels).

The height of a screen will be 256 pixels on a PAL Amiga, or 200 pixels on an NTSC Amiga.

IFF stands for Interchangeable File Format. It has been adopted as the standard way of storing pictures
on the Amiga. Blitz Basic can load and save files in this format.

ILBM stands for InterLeaved BitMap. You can obtain information about ILBM files, including size,
number of colours and resolution.

Table 10.5 : Screen commands

Command Function
===
BEEPSCREEN Flash a screen
CLOSESCREEN Close a screen
FINDSCREEN Search for a screen
HIDESCREEN Move screen to back of display
ILBMDEPTH Return depth of IFF image
ILBMHEIGHT Return height of IFF image
ILBMINFO Initialize IFF file for examination
ILBMVIEWMODE Return ViewMode of IFF image
ILBMWIDTH Return width of IFF image
LOADSCREEN Load an IFF file
MOVESCREEN Move a screen
SAVESCREEN Save an IFF file
SCREEN Open a screen
SCREENPENS Set default screen pens
SHOWBITMAP Display BitMap in a screen
SHOWSCREEN Move screen to front of display
SMOUSEX Return x co-ordinate of mouse
SMOUSEY Return y co-ordinate of mouse
VIEWPORT Return screen's ViewPort
WBTOSCREEN Assign screen number to Workbench screen

10.Screens

276

Chapter 11 : Windows
A window is an independent rectangular area of text and graphics on the screen, which can accept or
display information. Windows can be enlarged, shrunk and moved, without altering the main screen. All
windows can have a title bar and may contain special gadgets in their borders. (Note that windows
must always appear in an Intuition screen).

When using windows the following procedure is recommended:

1. Open a screen using SCREEN or WBTOSCREEN

2. Open a window using WINDOW

3. Use WAITEVENT to detect any user activity in the window

4. Return to step 3

11.1 Opening a window
WINDOW

Mode(s): Amiga
Statement: open an intuition window
Syntax: Window WINDOW#,X,Y,W,H,F,TITLE$,D,B[,G_LIST#[,BITMAP#]]

WINDOW opens the Intuition window index WINDOW#. The X and Y parameters contain the jump
coordinates relative to the top left corner of the screen. The W and H parameters contain the width and
height of the window.

The F, or FLAGS, parameter specifies the special elements that a window may contain, such as sizing
gadgets, close gadgets and drag-bars:

Table 11.1 : The FLAGS parameter

Window flag Value Description
===
WINDOWSIZING $0001 Attach sizing gadget to window
WINDOWDRAG $0002 Attach drag-bar to window
WINDOWDEPTH $0004 Attach depth gadget to window
WINDOWCLOSE $0008 Attach close gadget to window
SIZEBRIGHT $0010 Leave right hand window margin clear
SIZEBOTTOM $0020 Leave bottom window margin clear
BACKDROP $0100 Open window at back of display
GIMMEZEROZERO $0400 Keep border seperate from window area
BORDERLESS $0800 Open window with no border
ACTIVATE $1000 Activate the window once opened

277

To use more than one of these flags they must be logically combined using the "|" operator. For
example:

$0001|$0002|$0004

Which, when used as the FLAGS parameter, would attach a sizing gadget, drag-bar and depth gadget
to the window.

TITLE$ is a string which contains the title of the window, to be displayed at the very top of the window.
If you do not want a title for the window then use a null string for TITLE$ ("").

The D parameter specifies the colour of the detail pen of the window, as used in the window title. B is
the block pen of the window, as used in the window border.

The optional G_LIST# parameter is the number of a gadgetlist object to be attached to the window -
consult Chapter 13 for more information.

Here are some examples:

; *** Window examples
; *** Filename - Window.bb2

WbToScreen 0
WBenchToFront_
Window 0,0,0,150,100,$0001,"Sizing gadget",1,0
Window 1,150,0,150,100,$0002,"Drag gadget",1,0
Window 2,300,0,150,100,$0004,"Depth gadget",1,0
Window 3,450,0,150,100,$0008,"Close gadget",1,0
Window 4,0,100,150,100,$0001|$0008,"Sizing & Close",1,0
MouseWait
WBenchToBack_
End

11.1.1 Super-BitMap windows
Super-BitMap windows can also be created. These allow the window to have its own BitMap which can
be physically larger than the window. The BitMap can then be scrolled about the window. To attach a
BitMap to a window, set the SuperBitMap flag in the FLAGS parameter and include the number of the
BitMap to be attached in the BITMAP# parameter in your window definition.

GETSUPERBITMAP

Mode(s): Amiga
Statement: get super-BitMap
Syntax: GetSuperBitMap

11.Windows

278

PUTSUPERBITMAP

Mode(s): Amiga
Statement: put super-BitMap
Syntax: PutSuperBitMap

GETSUPERBITMAP is used to grab the contents of a super-BitMap. This allows you to update the
contents of the super-BitMap.

PUTSUPERBITMAP is used to put (i.e. refresh) the super-BitMap back into the current window.

In the following example, which demonstrates the above commands, try pressing the left mouse button
in the window to clear the super-BitMap:

; *** GetSuperBitMap/PutSuperBitMap example
; *** Filename - PutSuperBitMap.bb2

BitMap 0,320,256,3
; *** Draw BitMap graphics
Boxf 0,0,319,255,4
For A=1 To 7
 Circlef 160,100,160-A*5,100-A*5,A
Next A
Screen 0,11,"My Screen"
WIDTH=320
HEIGHT=256
PropGadget 0,3,-8,$18000+4+8+64,1,-20,8
PropGadget 0,-14,10,$11000+2+16+128,2,12,-20
AddIDCMP $10
SizeLimits 32,32,320+22,256+20
Window 0,0,20,200,150,$1489,"Window",1,2,0,0
Gosub DRAW

; *** Main loop
Repeat
 ev.l=WaitEvent
 If ev=2 Then Gosub SIZE
 If ev=$8 Then Gosub ALTER
 If ev=$20 Then Gosub MOVIE
Until ev=$200
End

; *** Draw sliders
SIZE:
SetHProp 0,1,X/WIDTH,InnerWidth/WIDTH
SetVProp 0,2,Y/HEIGHT,InnerHeight/HEIGHT
Redraw 0,1
Redraw 0,2
Goto DRAW

11.Windows

279

; *** Move SuperBitMap
MOVIE:
Repeat
Gosub DRAW
Until WaitEvent<>$10
Return

; *** Position SuperBitMap
DRAW:
W=WIDTH-InnerWidth
H=HEIGHT-InnerHeight
X=QLimit(HPropPot(0,1)*(W+1),0,W)
Y=QLimit(VPropPot(0,2)*(H+1),0,H)
PositionSuperBitMap X,Y
Return

; *** Alter the contents of SuperBitMap
ALTER:
GetSuperBitMap
Cls
PutSuperBitMap
Return

POSITIONSUPERBITMAP

Mode(s): Amiga
Statement: position a super-BitMap
Syntax: PositionSuperBitMap X,Y

This statement is used to position the BitMap in the current super-BitMap window. The X and Y
parameters specify the new co-ordinates of the top left-hand corner of the BitMap. Here's an example:

; *** PositionSuperBitMap example
; *** Filename - PositionSuperBitMap.bb2

BitMap 0,320,256,3
; *** Draw BitMap graphics
Boxf 0,0,319,255,4
For A=1 To 7
 Circlef 160,100,160-A*5,100-A*5,A
Next A
Screen 0,11,"My Screen"
WIDTH=320
HEIGHT=256
PropGadget 0,3,-8,$18000+4+8+64,1,-20,8
PropGadget 0,-14,10,$11000+2+16+128,2,12,-20
AddIDCMP $10
SizeLimits 32,32,320+22,256+20

11.Windows

280

Window 0,0,20,200,150,$1489,"Window",1,2,0,0
Gosub DRAW

; *** Main loop
Repeat
 ev.l=WaitEvent
 If ev=2 Then Gosub SIZE
 If ev=$20 Then Gosub MOVIE
Until ev=$200
End

; *** Draw sliders
SIZE:
SetHProp 0,1,X/WIDTH,InnerWidth/WIDTH
SetVProp 0,2,Y/HEIGHT,InnerHeight/HEIGHT
Redraw 0,1
Redraw 0,2
Goto DRAW

; *** Move SuperBitMap
MOVIE:
Repeat
Gosub DRAW
Until WaitEvent<>$10
Return

; *** Position SuperBitMap
DRAW:
W=WIDTH-InnerWidth
H=HEIGHT-InnerHeight
X=QLimit(HPropPot(0,1)*(W+1),0,W)
Y=QLimit(VPropPot(0,2)*(H+1),0,H)
PositionSuperBitMap X,Y
Return

11.2 Manipulating windows
The following commands are used to manipulate windows after they have been created with the
WINDOW statement.

11.2.1 Moving between windows
USE WINDOW

Mode(s): Amiga
Statement: set current window
Syntax: Use Window WINDOW#

11.Windows

281

The USE WINDOW statement sets the specified window (WINDOW#) as the currently used window. USE
WINDOW automatically performs a WINDOWINPUT and WINDOWOUTPUT on the window. For
example:

; *** Use Window example
; *** Filename - Use Window.bb2

WbToScreen 0
WBenchToFront_
Window 0,0,10,300,100,$0001,"",1,0
Window 1,300,10,300,100,$0001,"",1,0
Use Window 0
Print "Hello from window 0"
Use Window 1
Print "Hello from window 1"
MouseWait
WBenchToBack_
End

11.2.2 Closing a window
FREE WINDOW

Mode(s): Amiga
Statement: close a window
Syntax: Free Window WINDOW#

FREE WINDOW closes the specified window and removes it from the display. Here is an example:

; *** Free Window example
; *** Filename - Free Window.bb2

WbToScreen 0
WBenchToFront_
Window 0,0,10,300,100,$0001,"Click mouse",1,0
MouseWait
Free Window 0
VWait 50
End

11.Windows

282

CLOSEWINDOW

Mode(s): Amiga
Statement: close a window
Syntax: CloseWindow WINDOW#

CLOSEWINDOW works exactly the same as FREE WINDOW. Why? Who knows? Just for
the sake of it, here's the same example, but this time using CLOSEWINDOW:

; *** CloseWindow example
; *** Filename - CloseWindow.bb2

WbToScreen 0
WBenchToFront_
Window 0,0,10,300,100,$0001,"Click mouse",1,0
MouseWait
CloseWindow 0
VWait 50
End

11.2.3 Activating a window
ACTIVATE

Mode(s): Amiga
Statement: activate a window
Syntax: Activate WINDOW#

The ACTIVATE statement is used to activate a specified window (WINDOW#). For example:

; *** Activate example ** Filename - Activate.bb2 **

Screen 0,2
Window 0,0,0,320,100,0,"Window 1",0,1
Window 1,0,100,320,100,0,"Window 2",0,1
VWait 100
Activate 0
Use Window 0
Print "Hello from Window 1"
VWait 100
Activate 1
Use Window 1
Print "Hello from Window 2"
MouseWait
End

11.Windows

283

11.2.4 Window titles
WTITLE

Mode(s): Amiga
Statement: update window and screen title
Syntax: WTitle "WINDOW TITLE","SCREEN TITLE"

The WTITLE statement is used to alter, or update, the current window and screen titles. For example:

; *** WTitle example
; *** Filename - WTitle.bb2

Screen 0,3,"Blitz"
Window 0,0,12,320,200,0,"Basic",1,2
Repeat
 ev.l=WaitEvent
Until ev=$8
WTitle "Tops","Is"
VWait 20
MouseWait
End

11.2.5 Altering window menus
MENUS

Mode(s): Amiga
Statement: turn ALL menus on or off
Syntax: Menus On/Off

The MENUS statement may be used to turn ALL menus on or off in the currently used window. Here is
an example:

; *** Menus example
; *** Filename - Menus.bb2

MenuTitle 0,0,"PROJECT"
MenuItem 0,0,0,0,"Load"
Screen 0,3
Window 0,0,20,320,100,$0001+$0008+$100f,"",1,2
SetMenu 0
; *** Press left mouse to toggle menus on/off
T=1
Repeat

11.Windows

284

 ev.l=WaitEvent
 If Joyb(0)=1
 If T=1
 Menus Off
 Else
 Menus On
 End If
 T=1-T
 EndIf
Until ev=$200
End

11.2.6 Moving a window
WMOVE

Mode(s): Amiga
Statement: move the current window
Syntax: WMove X,Y

This statement physically moves the currently used window to the coordinates specified by the X and Y
parameters. For example:

; *** WMove examples
; *** Filename - WMove.bb2

Screen 0,2
Window 0,0,0,150,100,0,"Moving window",0,1
VWait 100
WMove 100,0
VWait 50
WMove 100,100
MouseWait
End

11.2.7 Window scrolling
WSCROLL

Mode(s): Amiga
Statement: scroll a rectangular area of the current window
Syntax: WScroll X1,Y1,X2,Y2,DELTA_X,DELTA_Y

The WSCROLL statement is used to scroll a portion of the current window. X1 and Y1 are the
coordinates of the top left-hand corner or the area to scroll and X2 and Y2 are the bottom right-hand

11.Windows

285

coordintes. The DELTA_X and DELTA_Y parameters specify the amount the area is to be moved, in the
following directions:

Table 11.2 : Delta values

Delta values DELTA_X DELTA_Y
==============================
Positive Left Up
Negative Right Down

Here's an example:

; *** WScroll example
; *** Filename - WScroll.bb2

Screen 0,3
Window 0,0,20,320,200,0,"Scrolled",0,1
For A=1 To 50
 WCircle Rnd(260)+30,Rnd(100)+40,Rnd(20)+5,Rnd(8)
Next A
VWait 50
WScroll 4,13,310,180,0,-20
VWait 50
WScroll 4,13,310,180,0,20
MouseWait
End

11.2.8 Window sizing
WSIZE

Mode(s): Amiga
Statement: alter the width and height of the current window
Syntax: WSize WIDTH,HEIGHT

WSIZE is used to change the size of the currently used window. WIDTH and HEIGHT are measured in
pixels:

; *** WSize example
; *** Filename - WSize.bb2

Screen 0,2
Window 0,0,0,150,100,0,"Growing window",0,1
VWait 100
WSize 320,200

11.Windows

286

MouseWait
End

SIZELIMITS

Mode(s): Amiga
Statement: set the limits that windows can be sized with sizing gadget
Syntax: SizeLimits MIN_WIDTH,MIN_HEIGHT,MAX_WIDTH,MAX_HEIGHT

SIZELIMITS is used to set the limits that any new windows can be sized to using the sizing gadget. The
MIN_WIDTH and MIN_HEIGHT parameters define the minimum size of the window, and MAX_WIDTH
and MAX_HEIGHT the maximum size, in pixels. Try the following example:

; *** Size restrictions
; *** Filename - SizeLimits.bb2

Screen 0,2
SizeLimits 100,100,320,100
Window 0,0,00,320,100,$0001+$0008,"Change my size",0,1
Repeat
 ev.l=WaitEvent
Until ev=$200
End

11.2.9 Window BitMaps
BITMAPTOWINDOW

Mode(s): Amiga
Statement: copy a BitMap to a window
Syntax: BitmapToWindow BITMAP#,WINDOW#[,X1,Y1,X2,Y2,W,H]

This statement is used to copy a BitMap (BITMAP#) to a window (WINDOW#). The optional parameters
are as follows:

Table 11.3 : BITMAPTOWINDOW parameters

Parameter Description
===
X1 X co-ordinate of BitMap
Y1 Y co-ordinate of BitMap
X2 X co-ordinate of window
Y2 Y co-ordinate of window

11.Windows

287

W Width of BitMap to copy (in pixels)
H Height of BitMap to copy (in pixels)

For example:

; *** BitMaptoWindow example
; *** Filename - BitMaptoWindow.bb2

Screen 0,3
ScreensBitMap 0,0
Cls
For A=1 To 100
 Circlef Rnd(320),Rnd(80),Rnd(20)+10,Rnd(5)+1
Next A
Window 0,0,110,320,100,0,"Click mouse button",1,2
BitMaptoWindow 0,0,20,20,10,15,300,80
Repeat
 ev.l=WaitEvent
Until ev=$8
End

11.3 Window functions
The following functions return information about previously initalised windows.

11.3.1 Window dimensions
WINDOWX

Mode(s): Amiga
Function: return horizontal location of the top left corner of the window
Syntax: x=WindowX

This function returns the horizontal location, in pixels, of the top left-hand corner of the currently used
window, relative to the screen that the window appears in.

To return the vertical location of the window, use the corresponding WINDOWY function.

WINDOWY

Mode(s): Amiga
Function: return the vertical location of the top left corner of the window
Syntax: y=WindowY

11.Windows

288

For example:

; *** WindowX/Y example
; *** Filename - WindowY.bb2

Screen 0,2
Window 0,Rnd(200)+10,Rnd(100)+10,150,100,0,"",0,1
WLocate 0,0
NPrint "Window X = ",WindowX
NPrint "Window Y = ",WindowY
MouseWait
End

WINDOWWIDTH

Mode(s): Amiga
Function: return the width of the current window
Syntax: w=WindowWidth

WINDOWWIDTH returns the width of the currently used window.

WINDOWHEIGHT

Mode(s): Amiga
Function: return the height of the current window
Syntax: h=WindowHeight

WINDOWHEIGHT returns the height of the currently used window:

; *** Window dimensions
; *** Filename - WindowHeight.bb2

Screen 0,2
Window 0,0,20,Rnd(150)+170,Rnd(100)+10,0,"",0,1
WLocate 0,0
NPrint "Window width = ",WindowWidth
NPrint "Window height = ",WindowHeight
MouseWait
End

11.Windows

289

INNERWIDTH

Mode(s): Amiga
Function: return the width inside the border of the current window
Syntax: w=InnerWidth

The INNERWIDTH function returns the width, in pixels, of the area inside the border of the currently
used window.

INNERHEIGHT

Mode(s): Amiga
Function: return the height inside the border of the current window
Syntax: h=InnerHeight

INNERHEIGHT returns the height, in pixels, of the area inside the border of the currently used window.
For example:

; *** Window dimensions 2
; *** Filename - InnerHeight.bb2

Screen 0,2
Window 0,0,20,Rnd(150)+170,Rnd(100)+10,0,"",0,1
WLocate 0,0
NPrint "Inner width = ",InnerWidth
NPrint "Inner height = ",InnerHeight
MouseWait
End

WTOPOFF

Mode(s): Amiga
Function: return distance between top of window border and its inside
Syntax: t=WTopOff

This function returns the distance between the top of the current window border and the inside of the
window, in pixels.

11.Windows

290

WLEFTOFF

Mode(s): Amiga
Function: return distance between left edge of window border and its inside
Syntax: l=WLeftOff

The WLEFTOFF function returns the distance between the left edge of the current window border and
the inside of the window, in pixels:

; *** Window dimensions 3
; *** Filename - WLeftOff.bb2

Screen 0,2
Window 0,0,20,320,100,0,"Window",0,1
WLocate 0,0
NPrint "WTopOff = ",WTopOff
NPrint "WLeftOff = ",WLeftOff
MouseWait
End

11.3.2 Window RastPort
RASTPORT

Mode(s): Amiga
Function: return the specified Window's RastPort address
Syntax: r=RastPort(WINDOW#)

This function returns the RastPort address of the specified window:

; *** RastPort example
; *** Filename - RastPort.bb2

Screen 0,2
Window 0,0,00,320,100,$0001+$0008,"",0,1
NPrint "RastPort = ",RastPort(0)
MouseWait
End

11.Windows

291

11.4 Window events

11.4.1 IDCMP flags
IDCMP flags are special flags which are attached to windows. They describe the type of "event" which
can be reported by a window. Events occur when a window has its size changed with the sizing gadgets,
or when a mouse button is pressed, or when a disk is removed etc. (see below for full list). Events are
reported by the WAITEVENT and EVENT functions.

Table 11.4 : IDCMP flags

IDCMP flag Event
===
$2 Reported when window has its size changed
$4 Reported when window contents corrupted
$8 Reported when mouse button is pressed
$10 Reported when mouse has been moved
$20 Reported when window gadget has been pushed down
$40 Reported when window gadget has been released
$100 Reported when menu operation in window has occured
$200 Reported when close gadget has been selected
$400 Reported upon keypress
$8000 Reported when disk is inserted
$10000 Reported when disk is removed
$40000 Reported when window has been activated
$80000 Reported when window has been de-activated

11.4.2 Defining IDCMP flags
By default, all windows are opened with an IDCMP flags setting of:

$02|$4|$8|$20|$40|$100|$200|$400|$40000|$80000

However, this may be changed by the DEFAULTIDCMP statement.

DEFAULTIDCMP

Mode(s): Amiga
Statement: set window IDCMP flags
Syntax: DefaultIDCMP IDCMP_FLAGS

This statement is used to define the window IDCMP flags. Each window can have its own set of IDCMP
flags, although they must be defined before the window is opened.

If you require more than one IDCMP flag then you can use the (|) operator to add them together. Here
are some examples:

11.Windows

292

; *** DefaultIDCMP example
; *** Filename - DefaultIDCMP.bb2

Screen 0,3
; *** This example closes a window using
; *** the mouse button, not a close gagdet
DefaultIDCMP $8
Window 0,0,20,320,100,0,"Press mouse button",0,1
ev.l=WaitEvent
If ev=$8 Then Free Window 0
VWait 100
End

; *** DefaultIDCMP example 2
; *** Filename - DefaultIDCMP2.bb2

Screen 0,3
; *** This example flashes the screen
; *** upon a key-press
DefaultIDCMP $8|$400
Window 0,0,20,320,100,$1000,"Press a key",0,1
Repeat
 ev.l=WaitEvent
 If ev=$400 Then BeepScreen 0
Until ev=$8
End

; *** DefaultIDCMP example 3
; *** Filename - DefaultIDCMP3.bb2

Screen 0,3
; *** This example ends when the
; *** close gadget is selected
DefaultIDCMP $200
Window 0,0,20,320,100,$0008|$1000,"Hit close gadget",0,1
Repeat
 ev.l=WaitEvent
Until ev=$200
End

; *** DefaultIDCMP example 4
; *** Filename - DefaultIDCMP4.bb2

Screen 0,3
; *** This example ends when the mouse pointer

11.Windows

293

; *** is moved
DefaultIDCMP $10
Window 0,0,20,320,100,$1000,"Move mouse pointer",0,1
Repeat
 ev.l=WaitEvent
Until ev=$10
End

; *** DefaultIDCMP example 5
; *** Filename - DefaultIDCMP5.bb2

Screen 0,3
; *** This example ends when a disk is
; *** is inserted into a disk drive
DefaultIDCMP $80000
Window 0,0,20,320,100,$1000,"Insert a disk",0,1
Repeat
 ev.l=WaitEvent
Until ev=$80000
End

11.4.3 Adding IDCMP flags
ADDIDCMP

Mode(s): Amiga/Blitz
Statement: add IDCMP flags
Syntax: AddIDCMP IDCMP_FLAGS

This statement is used to add IDCMP flags to those selected by the DEFAULTIDCMP statement.
ADDIDCMP must be executed before the window is opened. Here are some examples:

; *** AddIDCMP example
; *** Filename - AddIDCMP.bb2

Screen 0,3
; *** Close gadget exits program
DefaultIDCMP $200
; *** Add IDCMP flag (key-press)
AddIDCMP $400
Window 0,0,20,320,100,$0008|$1000,"Close me",0,1
Repeat
 ev.l=WaitEvent
 ; *** Flash screen upon key-press
 If ev=$400 Then BeepScreen 0

11.Windows

294

Until ev=$200
End

; *** AddIDCMP example 2
; *** Filename - AddIDCMP2.bb2

Screen 0,3
; *** Close gadget exits program
DefaultIDCMP $200
; *** Add IDCMP flag (window de-activation)
AddIDCMP $80000
Window 0,0,20,320,100,$0008|$1000,"Close me",0,1
Repeat
 ev.l=WaitEvent
 ; *** Clear window upon de-activation
 If ev=$80000 Then InnerCls Rnd(4)+1 : Activate 0
Until ev=$200
End

11.4.4 Subtracting IDCMP flags
SUBIDCMP

Mode(s): Amiga/Blitz
Statement: subtract IDCMP flags
Syntax: SubIDCMP IDCMP_FLAGS

Similarly, the SUBIDCMP statement subtracts IDCMP flags from those selected by the DEFAULTIDCMP
statement. SUBIDCMP must be executed before the window is opened. Examples:

; *** SubIDCMP example
; *** Filename - SubIDCMP.bb2

Screen 0,3
; *** Close gadget exits program
DefaultIDCMP $200|$80000
; *** Remove de-activation IDCMP flag
SubIDCMP $80000
Window 0,0,20,320,100,$0008|$1000,"Close me",0,1
Repeat
 ev.l=WaitEvent
 ; *** This line won't work
 If ev=$80000 Then InnerCls Rnd(4)+1 : Activate 0
Until ev=$200
End

11.Windows

295

; *** SubIDCMP example 2
; *** Filename - SubIDCMP2.bb2

Screen 0,3
; *** Close gadget exits program
DefaultIDCMP $200|$400
; *** Try removing the following line
SubIDCMP $400
Window 0,0,20,320,100,$0008|$1000,"Close me",0,1
Repeat
 ev.l=WaitEvent
 ; *** This line won't work
 If ev=$400 Then End
Until ev=$200
End

11.4.5 Window event functions
The following commands are used to return the IDCMP flags of the Intuition events which occur in
windows.

WAITEVENT

Mode(s): Amiga
Command: return the IDCMP flag of an Intuition event
Syntax: ev.l=WaitEvent

WAITEVENT, as a statement, is used to halt program execution until an Intuition event occurs. This event
must satisfy the relevant IDCMP flags.

Used as a function, WAITEVENT will return the IDCMP flag of the event. If no event has occured then (0)
is returned.

Note that the value returned by the WAITEVENT function must be assigned to a long type variable (e.g.
ev.l=WaitEvent). For example:

; *** WaitEvent example
; *** Filename - WaitEvent.bb2

Screen 0,3
Window 0,0,20,320,100,$0008,"Close me",0,1
; *** Exit only if close gadget is selected
Repeat
 ev.l=WaitEvent
Until ev=$200
End

11.Windows

296

EVENT

Mode(s): Amiga
Function: return the IDCMP flag of an Intuition event
Syntax: ev.l=Event

The EVENT function also returns the IDCMP flag of an Intuition event, except it does not halt program
execution. If no event has occured then (0) is returned. Here's an example:

; *** Event example
; *** Filename - Event.bb2

Screen 0,3
ScreensBitMap 0,0
DefaultIDCMP $400
Window 0,0,20,320,200,$1000,"Press any key",0,1
While Event=0
 InnerCls Rnd(7)+1
 VWait 6
Wend
End

EVENTWINDOW

Mode(s): Amiga/Blitz
Function: return the window number in which a window event occured
Syntax: e=EventWindow

This statement returns the number of the window in which the most recent window event occured.
Window events are those detected by the WAITEVENT or EVENT statements. For example:

; *** EventWindow example
; *** Filename - EventWindow.bb2

Screen 0,3
Window 0,0,0,160,100,$100f,"Window 0",1,2
Window 1,160,0,160,100,$100f,"Window 1",1,2
Window 2,0,100,160,100,$100f,"Window 2",1,2
Window 3,160,100,160,100,$100f,"Window 3",1,2
; *** Try fiddling with the windows in this demo
; *** (Press escape to quit)
Repeat
 ev.l=WaitEvent
 Use Window lw
 InnerCls

11.Windows

297

 Use Window EventWindow
 WLocate 0,0
 Print "Event here!"
 lw=EventWindow
Until Inkey$=Chr$(27)
End

11.4.6 Gadget events
GADGETHIT

Mode(s): Amiga
Function: return number of gadget that caused the last gadget event
Syntax: g=GadgetHit

The GADGETHIT function returns the number of the gadget that caused the last gadget event. As
gadgets in different windows may use the same identification numbers, the EVENTWINDOW statement
may be used to locate the correct gadget. If no gadgets have been selected then (-1) will be returned.
For example:

; *** GadgetHit example
; *** Filename - GadgetHit.bb2

Screen 0,3
TextGadget 0,20,20,0,1,"A gadget"
TextGadget 0,20,40,0,2,"Another gadget"
TextGadget 0,20,60,0,3,"QUIT"
Window 0,0,0,160,100,0,"A Window",1,2,0
Repeat
 Repeat
 ev.l=WaitEvent
 Until ev=$40
 If GadgetHit=3 Then End
Forever

11.4.7 Menu events
MENUHIT

Mode(s): Amiga
Function: return number of menu that caused the last menu event
Syntax: m=MenuHit

MENUHIT returns the number of the menu that caused the last menu event. As menus in different
windows may use the same identification numbers, the EVENTWINDOW statement may be used to

11.Windows

298

locate the correct menu. If no menus have been selected then (-1) will be returned:

; *** MenuHit example
; *** Filename - MenuHit.bb2

Screen 0,3
Window 0,0,20,160,100,$1000,"Press right mouse",1,2
MenuColour 5
MenuTitle 0,0,"This is a menu title"
MenuItem 0,0,0,0,"This is a menu item"
MenuItem 0,0,0,1,"And this is another"
SetMenu 0
While MenuHit<>0
 ev.l=WaitEvent
Wend
End

ITEMHIT

Mode(s): Amiga
Function: return number of menu item that caused the last menu event
Syntax: i=ItemHit

This function returns the number of the menu item that caused the last menu event. If no items have
been selected then (-1) will be returned. For example:

; *** ItemHit example
; *** Filename - ItemHit.bb2

Screen 0,3
Window 0,0,20,160,100,$1000,"Press right mouse",1,2
MenuColour 5
MenuTitle 0,0,"Project"
MenuItem 0,0,0,0,"Load"
MenuItem 0,0,0,1,"QUIT"
SetMenu 0
Repeat
 WaitEvent
Until ItemHit=1
End

11.Windows

299

SUBHIT

Mode(s): Amiga
Function: return number of menu subitem that caused the last menu event
Syntax: s=SubHit

The SUBHIT function returns the number of the menu subitem that caused the last menu event. If no
subitem has been selected then (-1) will be returned. Here is an example:

; *** SubHit example
; *** Filename - SubHit.bb2

Screen 0,3
Window 0,0,20,160,100,$1000,"Press right mouse",1,2
MenuColour 5
MenuTitle 0,0,"Project"
MenuItem 0,0,0,0,"Hello"
SubItem 0,0,0,0,0,"QUIT"
SetMenu 0
Repeat
 WaitEvent
Until SubHit=0
End

11.4.8 Keyboard events
EVENTCODE

Mode(s): Amiga
Function: return keyboard event code
Syntax: e=EventCode

This function returns the code of the last keyboard event. For example:

; *** EventCode example
; *** Filename - EventCode.bb2

Screen 0,3
Window 0,0,0,320,200,$1000,"Amiga mode",0,1
Repeat
 ev.l=WaitEvent
 A$=Inkey$
Until ev.l>0
NPrint EventCode

11.Windows

300

VWait 50
End

EVENTQUALIFIER

Mode(s): Amiga
Function: return keyboard event qualifier
Syntax: e=EventQualifier

The EVENTQUALIFIER function returns a code which indicates the control key used during the most
recent keyboard event. Below is a table of of possible codes:

Table 11.5 : Qualifier codes

Control key Code
===================
[None] $8000
[Ctrl] $8008
[Caps Lock] $8004
Left [Shift] $8001
Right [Shift] $8002
Left [Alt] $8010
Right [Alt] $8020
Left [Amiga] $8040
Right [Amiga] $8080

Try this example:

; *** EventQualifier example
; *** Filename - EventQualifier.bb2

Screen 0,3
DefaultIDCMP $400
Window 0,0,20,320,100,$1000,"Type something",0,1
Repeat
 ev.l=WaitEvent
Until ev=$400
WLocate 0,0
NPrint Hex$(EventQualifier)
VWait 80
End

11.Windows

301

11.4.9 Clearing the event queue
FLUSHEVENTS

Mode(s): Amiga/Blitz
Statement: clear events from event queue
Syntax: FlushEvents [IDCMP_FLAGS]

Window events are automatically stored in a special event queue, or storage buffer, so that they can be
read at a later stage in your program. FLUSHEVENTS can be used to clear the event queue, if necessary.
If the optional IDCMP_FLAGS parameter is included then only these events are cleared.

11.5 Window text
All Workbench-based applications use text to a certain degree. Text can be used to prompt the user for
input, or to display a message, or help file.

As already explained, the PRINT and NPRINT statements are used to output text onto BitMaps, and in
windows. Hence the following commands are provided by Blitz Basic for the manipulation of window
text.

WINDOWOUTPUT

Mode(s): Amiga/Blitz
Statement: cause print commands to output to window object
Syntax: WindowOutput WINDOW#

The WINDOWOUTPUT statement causes all future print statements (PRINT and NPRINT) to send their
output to the specified window. WINDOWOUTPUT is automatically executed when a window is opened
or USE WINDOW is executed. When a window is closed, WINDOWOUTPUT must be used to re-direct
print output. For example:

; *** WindowOutput example
; *** Filename - WindowOutput.bb2

Screen 0,3
Window 0,0,0,320,100,0,"",0,1
Window 1,0,100,320,100,0,"",0,1
WindowInput 0
WindowOutput 0
Activate 0
A$=Edit$("Type something",15)
End

11.Windows

302

WPRINTSCROLL

Mode(s): Amiga
Statement: force text to be scrolled in window
Syntax: WPrintScroll

This statement is used to scroll the current window contents upwards if the text cursor reaches the
bottom of the window. WPRINTSCROLL only works with windows opened with flag ($400) set. For
example:

; *** WPrintScroll example
; *** Filename - WPrintScroll.bb2

Screen 0,3
Window 0,0,15,320,100,$400,"",1,2
For A=0 To 200
 VWait
 NPrint "Scrolling ",A
 WPrintScroll
Next A
End

11.5.1 Changing the text style
LOADFONT

Mode(s): Amiga
Statement: load an intuition font
Syntax: LoadFont FONT#,"FILENAME.FONT",Y_SIZE[,STYLE]

WINDOWFONT

Mode(s): Amiga
Statement: set intuition font for current window
Syntax: WindowFont FONT#

The LOADFONT statement is used to load an intuition font into memory. The Y_SIZE parameter is the
size of the intuition font to load. If the optional STYLE parameter is included then styling may be
applied to the font.

11.Windows

303

Table 11.6 : The STYLE parameter

STYLE Description
=====================
1 Underlined
2 Bold
4 Italic
8 Width increase

WINDOWFONT is used to set the font for the currently used window. Any further text ouput to this
window will appear in this text style. The FONT# parameter specifies a previously initialised intuition
font. For example:

; *** LoadFont/WindowFont example
; *** Filename - LoadFont.bb2

Screen 0,3,"Hello"
Window 0,0,20,320,200,$1000,"Fonts",1,0
NPrint "Normal"
LoadFont 0,"FILENAME.FONT",12
WindowFont 0
NPrint "Your font"
MouseWait
End

11.5.2 Setting the text colour
WCOLOUR

Mode(s): Amiga
Statement: set foreground and background colour of window text
Syntax: WColour FOREGROUND,BACKGROUND

The WCOLOUR statement specifies the foreground and background colour of all text printed in the
currently used window. For example:

; *** A splash of WColour
; *** Filename - WColour.bb2

Screen 0,3
Window 0,0,20,320,200,$1000,"Text colour",1,0
WColour 0,1
NPrint "Hilight"
WColour 1,0

11.Windows

304

NPrint "No hilight"
MouseWait
End

11.5.3 Changing the text mode
WJAM

Mode(s): Amiga
Statement: set window text drawing mode
Syntax: WJam MODE

WJAM is used to select which parts of the text characters are printed on the currently used window.
MODE is a special parameter which sets the print mode:

Table 11.7 : WJam modes

Value Mode Description
===
0 Jam1 Only the foreground colour to be printed
1 Jam2 Print foreground and background colours
2 Complement Combine characters (XOR)
4 Inverse Print inverse video characters

Here is an example:

; *** WJam session ** Filename - WJam.bb2

Screen 0,3
Window 0,0,20,320,200,0,"Examples",1,0
Print "Overlap"
VWait 100
WJam 0
WLocate 0,0
Print "Rubbish"
VWait 100
WJam 1
WLocate 0,0
Print "Rubbish"
VWait 100
WLocate 0,10
WJam 4
Print "Inverse video"
MouseWait
End

11.Windows

305

11.5.4 The text cursor
WLOCATE

Mode(s): Amiga/Blitz
Statement: set the text cursor position
Syntax: WLocate X,Y

The WLOCATE statement sets the text cursor position in the currently used window. The X and Y
parameters specify the distance, in pixels, from the upper left corner of the window. Each window can
have a different text cursor position. For example:

; *** WLocate example
; *** Filename - WLocate.bb2

Screen 0,2
Window 0,0,20,170,100,0,"",0,1
WLocate 0,0
NPrint "Top left"
WLocate 60,85
NPrint "Bottom right"
MouseWait
End

The following two functions return the horizontal and vertical positions of the text cursor respectively.

WCURSX

Mode(s): Amiga
Function: return the horizontal cursor position
Syntax: x=WCursX

For example:

; *** WCursX example ** Filename - WCursX.bb2

Screen 0,2
Window 0,0,20,170,100,0,"Cursor X =",0,1
For A=1 To 5
 Print WCursX
VWait
Next A
MouseWait
End

11.Windows

306

WCURSY

Mode(s): Amiga
Function: return the vertical cursor position
Syntax: y=WCursY

Here's an example:

; *** WCursY example
; *** Filename - WCursY.bb2

Screen 0,2
Window 0,0,20,170,100,0,"Cursor Y =",0,1
For A=1 To 5
 NPrint WCursY
VWait
Next A
MouseWait
End

11.6 Window input
WINDOWINPUT

Mode(s): Amiga/Blitz
Statement: cause input commands to receive info from window object
Syntax: WindowInput WINDOW#

The WINDOWINPUT statement causes all future input functions to receive their input from the specified
window (WINDOW#). WINDOWINPUT is automatically executed when a window is opened or USE
WINDOW is executed. When a window is closed, WINDOWINPUT must be used to re-direct keyboard
input. Try this example:

; *** WindowInput example
; *** Filename - WindowInput.bb2

Screen 0,3
Window 0,0,0,320,100,0,"",0,1
Window 1,0,100,320,100,0,"",0,1
WindowInput 0
WindowOutput 0
Activate 0
A$=Edit$("Type something",15)
End

11.Windows

307

11.6.1 Reading the keyboard
RAWKEY and QUALIFIER are used to read the 96 alphanumeric and special keys which make up the
Amiga's keyboard.

RAWKEY

Mode(s): Amiga
Function: return the raw key code of the most recent key-press
Syntax: k=RawKey

RAWKEY returns the code of a key that has already been detected using the INKEY$ function. Here is an
example:

; *** RawKey example
; *** Filename - RawKey.bb2

Screen 0,3
Window 0,0,0,320,200,$1000,"Hello!",0,1
Repeat
 ev.l=WaitEvent
 WLocate 0,0
 A$=Inkey$
 Print RawKey
Until ev.l=$8
End

QUALIFIER

Mode(s): Amiga
Function: return the control key(s) used in the most recent key-press
Syntax: q=Qualifier

QUALIFIER is used to return a code which indicates the control key used during the most recent key-
press. Below is a table of of possible codes:

Table 11.8 : Qualifier codes

Control key Code
===================
[None] $8000
[Ctrl] $8008
[Caps Lock] $8004
Left [Shift] $8001
Right [Shift] $8002
Left [Alt] $8010

11.Windows

308

Right [Alt] $8020
Left [Amiga] $8040
Right [Amiga] $8080

For example:

; *** Qualifier example ** Filename - Qualifier.bb2

Screen 0,3
Window 0,0,0,320,200,$1000,"Amiga mode",0,1
Repeat
 ev.l=WaitEvent
 WLocate 0,0
 A$=Inkey$
 NPrint RawKey
Until A$<>""
NPrint Qualifier
VWait 50
End

If more than one control keys are pressed, then several codes will be returned. To read individual codes,
use the logical AND operator.

11.6.2 The input cursor
These commands are used in conjunction with the EDIT and EDIT$ functions when obtaining window
text input from the user.

EDITAT

Mode(s): Amiga
Function: return the horizontal character position of the cursor Syntax:
x=Editat

This function returns the horizontal character position of the cursor. For example:

; *** Editat example ** Filename - Editat.bb2

Screen 0,3
Window 0,0,20,320,100,$1000,"A window",1,2
NPrint "Enter some text:"
A$=Edit$(20)
NPrint Editat
MouseWait
End

11.Windows

309

EDITFROM

Mode(s): Amiga
Statement: control how Edit & Edit$ operate within windows
Syntax: EditFrom [POSITION]

EDITFROM controls how EDIT and EDIT$ operate within windows. If the optional POSITION parameter is
included then editing will begin at this character position. Example:

; *** EditFrom example
; *** Filename - EditFrom.bb2

Screen 0,3
Window 0,0,20,320,100,$1000,"A window",1,2
NPrint "Enter some text:"
EditFrom 16
A$=Edit$(30)
MouseWait
End

EDITEXIT

Mode(s): Amiga/Blitz
Function: return the ASCII value of the Edit($) exit character Syntax:
e=EditExit

This function returns the Ascii code of the character that was used to exit a window-based EDIT or
EDIT$ function. EDITFROM must be used prior to EDITEXIT to initialise alternate termination keys. Here's
an example:

; *** EditExit example
; *** Filename - EditExit.bb2

Screen 0,3
Window 0,0,20,320,100,$1000,"",1,2
NPrint "Enter text or press escape:"
EditFrom 1
A$=Edit$(30)
If EditExit=27
 NPrint "Escape key pressed"
EndIf
MouseWait
End

11.Windows

310

11.7 The mouse pointer
The mouse is often used for controlling applications, especially those involving aspects of Intuition,
such as windows. Here's how.

11.7.1 Mouse functions
WMOUSEX

Mode(s): Amiga
Function: return horizontal mouse position relative to left of window
Syntax: x=WMouseX

This function returns the horizontal position of the mouse pointer relative to the left of the currently
used window. Example:

; *** WMouseX example
; *** Filename - WMouseX.bb2

Screen 0,2
Window 0,0,0,150,100,0,"Mouse coordinates",0,1
While Joyb(0)=0
 WLocate 0,0
 NPrint "X = ",WMouseX," "
Wend
End

To return the vertical position of the mouse pointer the corresponding WMOUSEY statement should be
used.

WMOUSEY

Mode(s): Amiga
Function: return vertical mouse position relative to the window top
Syntax: y=WMouseY

For example:

; *** Mouse coordinates
; *** Filename - WMouseY.bb2

Screen 0,2
Window 0,0,0,150,100,0,"Mouse coordinates",0,1
While Joyb(0)=0
 WLocate 0,0
 NPrint "X = ",WMouseX," "

11.Windows

311

 NPrint "Y = ",WMouseY," "
Wend
End

EMOUSEX

Mode(s): Amiga/Blitz
Function: return horizontal mouse position when last window event occured
Syntax: x=EMouseX

The EMOUSEX function returns the horizontal position of the mouse pointer when the most recent
"window event" occured. Window events are those which occur when a window's properties are altered.
They are detected using the EVENT or WAITEVENT statements (see next example).

EMOUSEY

Mode(s): Amiga/Blitz
Function: return vertical mouse position when last window event occured
Syntax: y=EMouseY

The EMOUSEY function returns the vertical position of the mouse pointer when the most recent
"window event" occured. Window events are those which occur when a window's properties are altered.
They are detected using the EVENT or WAITEVENT statements. For example:

; *** Mouse coordinates 2
; *** Filename - EMouseY.bb2

Screen 0,2
ScreensBitMap 0,0
Window 0,50,50,170,100,$0008,"Close me",0,1
Repeat
 ev.l=WaitEvent
Until ev=$200
NPrint "X was ",EMouseX," "
NPrint "Y was ",EMouseY," "
VWait 100
End

11.Windows

312

11.7.2 Mouse buttons
MBUTTONS

Mode(s): Amiga
Function: return code of the button that caused the last mouse event
Syntax: m=MButtons

This function returns the code of the mouse button that caused the last "mouse button event". If menus
have been turned off using the MENUS OFF statement then the right mouse button will also register an
event:

Table 11.9 : MButtons return values

Button Down Up
================
Left 1 5
Right 2 6

Try the following example:

; *** MButtons example
; *** Filename - MButtons.bb2

Screen 0,3
Window 0,0,0,320,200,$1000,"Click left mouse",0,1
Repeat
 WaitEvent
Until MButtons=1
End

11.7.3 The mouse pointer
I've already expressed my dislike of the WIMP (Windows, Icons, Menus and Pointers) environment. So, if
you feel the same way, then you'll be glad to know that the shape of the window pointer can be altered
with WPOINTER.

WPOINTER

Mode(s): Amiga
Statement: change the mouse pointer in the current window
Syntax: WPointer SHAPE#

11.Windows

313

WPOINTER is similar to the POINTER statement in that it is used to change the shape of the mouse
pointer. SHAPE# must be a previously-initialised four colour shape object:

; *** Point me in the right direction
; *** Filename - WPointer.bb2

Screen 0,2
Window 0,0,0,320,100,$1000,"Pointer",0,1
LoadShape 0,"POINTER.SHAPE"
WPointer 0
MouseWait
End

11.8 Window graphics
Blitz Basic can generate fabulous low-resolution and high-resolution window displays using its powerful
drawing commands. These graphic displays are made up of small blocks of colour called pixels, and all
screens are composed of thousands of pixels in varying arrangements.

WCLS

Mode(s): Amiga
Statement: clear current window
Syntax: WCls [COLOUR]

WCLS clears the current window with colour (0). If the optional COLOUR parameter is included then the
window will be cleared with this colour. If the current window was unopened then this statement will
clear the window border and title bar. For example:

; *** When I'm cleaning windows
; *** Filename - WCls.bb2

Screen 0,3
Window 0,0,20,320,200,$400,"A window",0,1
WBox 100,70,200,150,4
VWait 100
WCls
VWait 100
For A=1 To 50
 WCls Rnd(8)
 VWait 6
Next A
End

11.Windows

314

INNERCLS

Mode(s): Amiga
Statement: clear inner portion of current window
Syntax: InnerCls [COLOUR]

The INNERCLS statement is identical to WCLS, however it will only clear the inner portion of the current
window, not the window border or title bar:

; *** When I'm cleaning windows take 2
; *** Filename - InnerCls.bb2

Screen 0,3
Window 0,0,20,320,200,0,"Window",0,1
VWait 100
WCls 2
VWait 100
Free Window 0
; *** Same example using InnerCls
Window 0,0,20,320,200,0,"Window",0,1
VWait 100
InnerCls 2
MouseWait
End

WPLOT

Mode(s): Amiga
Statement: plot a single point
Syntax: WPlot X,Y,COLOUR

The WPLOT statement plots a single pixel at coordintes X,Y in colour COLOUR in the currently used
window. You can really only make very simple pictures with WPLOT. For example:

; *** WPlot example
; *** Filename - WPlot.bb2

Screen 0,3
Window 0,0,10,300,100,$0001|$1000,"",1,0
For A=1 To 100
 WPlot Rnd(270)+20,Rnd(80)+10,Rnd(6)+1
Next A
MouseWait
End

11.Windows

315

WLINE

Mode(s): Amiga
Statement: draw a line or series of lines
Syntax: WLine X1,Y1,X2,Y2[,XN,YN...],COLOUR

The WLINE statement draws a line connecting two pixels on the currently used window. X1 and Y1
specify the start of the line and X2 and Y2 specify the end of the line. If further X and Y parameters are
included then polygons can be constructed. Here is an example:

; *** WLine examples ** Filename - WLine.bb2

Screen 0,3
Window 0,0,20,320,200,0,"",0,1
; *** Building a square with WLine
Wline 10,10,20,10,20,20,10,20,10,10,4
VWait 100
; *** Move the mouse to make pretty patterns
Repeat
 Wline SMouseX,SMouseY,Rnd(280)+20,Rnd(180)+10,Rnd(8)
Until Joyb(0)>0
MouseWait
End

WBOX

Mode(s): Amiga
Statement: draw a solid rectangle
Syntax: WBox X1,Y1,X2,Y2,COLOUR

WBOX is used to draw solid rectangles in the currently used window. X1 and
Y1 are the coordinates of the top left-hand corner of the rectangle and X2
and Y2 are the coordinates of the bottom right-hand corner. COLOUR
specifies the colour of the rectangle. Here is an example:

; *** WBox example
; *** Filename - WBox.bb2

Screen 0,3
Window 0,0,20,320,200,0,"Boxing clever",0,1
For A=1 To 500
 WBox Rnd(300)+10,Rnd(180)+15,Rnd(300)+5,Rnd(180)+15,Rnd(8)
Next A
MouseWait
End

11.Windows

316

WCIRCLE

Mode(s): Amiga
Statement: draw a circular outline
Syntax: WCircle X,Y,RADIUS,COLOUR

The WCIRCLE statement allows you to draw a circle in the currently used window. The position and size
of the circle is set using the X and Y parameters, followed by the radius of the circle. COLOUR specifies
the colour of the circle. For example:

; *** WCircle example
; *** Filename - WCircle.bb2

Screen 0,3
Window 0,0,20,320,200,0,"Silly circles",0,1
For A=1 To 50
 WCircle Rnd(260)+30,Rnd(100)+60,Rnd(20)+5,Rnd(8)
Next A
MouseWait
End

WELLIPSE

Mode(s): Amiga
Statement: draw an elliptical outline
Syntax: WEllipse X,Y,X_RADIUS,Y_RADIUS,COLOUR

Ellipses can be drawn just as easily with the WELLIPSE statement. WELLIPSE works in the same way as
WCIRCLE, however an extra Y_RADIUS parameter is included which specifies the vertical radius of the
ellipse. For example:

; *** WEllipse example
; *** Filename - WEllipse.bb2

Screen 0,3
Window 0,0,20,320,200,0,"Elliptical outlines",0,1
For A=1 To 90
 WEllipse Rnd(260)+30,Rnd(100)+60,Rnd(20)+5,Rnd(10)+5,Rnd(8)
Next A
MouseWait
End

11.Windows

317

WBLIT

Mode(s): Amiga
Statement: draw a shape object in a window
Syntax: WBlit SHAPE#,X,Y

This statement is used to draw, or blit, a shape object in a window, at co-ordinates (X,Y). Here's an
example:

; *** WBlit example ** Filename - WBlit.bb2

BitMap 0,320,256,3
Boxf 10,10,20,20,5
GetaShape 0,10,10,20,20
Screen 0,3
Window 0,0,20,320,200,0,"",1,2
For A=1 To 50
 WBlit 0,Rnd(260)+30,Rnd(150)+30
Next A
Repeat
 ev.l=WaitEvent
Until ev>0
End

11.9 End-of-Chapter summary
A window is an independent rectangular area of text and graphics on the screen, which can accept or
display information. Windows are opened using the WINDOW statement.

Windows can also be closed, moved, scrolled, cleared and re-sized.

IDCMP flags are special flags which are attached to windows. They describe the type of "event" which
can be reported by a window. Events are reported by the WAITEVENT and EVENT functions.

The style and rendering mode for window text can be altered, as can the shape of the window pointer.

The window library also supports some powerful 2D drawing commands:

Table 11.10 : Window drawing commands

Shape Command
===================
Square WBOX
Rectangle WBOX
Circle WCIRCLE
Ellipse WELLIPSE

11.Windows

318

Chapter 12 : Menus
For anyone who wishes to use their Amiga for other purposes than playing games there is a wealth of
literature aimed at teaching basic programming techniques. Many who have mastered aspects of the
BASIC language find themselves directed towards writing games programs rather than more serious
applications. The main reason for that is the lack of direction in the literature towards developing
business or educational type programs.

We can, however develop a technique for writing non-games type programs which is both simple in
concept and in widespread use on all computer systems. The resulting programs come under the
general category of "Menu driven programs".

Menus are lists of items, or options. Menu titles can be seen by pressing the right-hand mouse button.
To observe the contents of a menu, point at the appropriate title with the mouse pointer and the
options will appear directly beneath the menu title. These options are selected by moving the mouse
pointer over the desired option and releasing the mouse button whilst it is highlighted.

These menus, or MenuList objects, can contain menu titles, menu items and possible even sub-menu
items.

Menus are attached to windows after the window has been opened, with the SETMENU statement. Each
window can have its own menus, allowing complex user interfaces to be created.

This chapter will take a look at creating menu driven programs and manipulating menus in Blitz Basic 2.

12.1 Defining menus
Each list of menu options must have a menu title, which appears at the very top of the menu.

MENUTITLE

Mode(s): Amiga/Blitz
Statement: add a menu title to a MenuList
Syntax: MenuTitle MENULIST,MENU#,TITLE$

This statement is used to create the Intuition menu titles which appear when the right mouse button is
held down. The MENU# parameter specifies the number of the title. The title at the left-hand edge of
the menu title is given a value of (0), followed by (1) for the next title and so on. TITLE$ is the text that
will appear when the right mouse button is used. Here is an example:

; *** MenuTitle example
; *** Filename - MenuTitle.bb2

; *** Define menu title
MenuTitle 0,0,"Project"
; *** Define menu option (see later)
MenuItem 0,0,0,0,"QUIT"
; *** Open an Intuition display

319

Screen 0,3
Window 0,0,20,160,100,$100f,"Blitz Basic",1,2
; *** Attach menu to window (see later)
SetMenu 0
; *** Repeat until QUIT option is selected
Repeat
Until WaitEvent=256 AND MenuHit=0 AND ItemHit=0
End

12.1.1 Text menu items
Menu items are the options which appear directly beneath a menu title.

MENUITEM

Mode(s): Amiga/Blitz
Statement: create a text menu item
Syntax: MenuItem MENULIST,FLAGS,MENU#,ITEM,TEXT$[,SHORT$]

The MENUITEM statement creates a text menu item. Menu items are the options which appear directly
below menu titles in Intuition menus. FLAGS is a special parameter which controls the status of an
individual menu item:

Table 12.1 : The FLAGS parameter

FLAG Description
===
0 Standard menu item
1 Toggle-type menu item (toggled by user)
2 Toggle-type menu item (toggled by FLAG 2 items)
3 As FLAG 1 but initially "On"
4 As FLAG 2 but initially "On"

The MENU# parameter is the number of the menu title under which the menu item will appear.

ITEM is the option number for the menu item. Menu items with an option number of (0) appear at the
top of an options list, followed by (1), and so on.

TEXT$ is the option text. The optional SHORT$ parameter specifies a one character "keyboard shortcut"
for the menu item. For example:

; *** MenuItem example
; *** Filename - MenuItem.bb2

; *** Define menu title
MenuTitle 0,0,"Project"
; *** Define menu options

12.Menus

320

MenuItem 0,0,0,0,"Load"
MenuItem 0,0,0,1,"Save"
MenuItem 0,0,0,2,"QUIT"
; *** Open an Intuition display
Screen 0,3
Window 0,0,20,160,100,$100f,"Blitz Basic",1,2
; *** Attach menu to window
SetMenu 0
; *** Repeat until QUIT option is selected
Repeat
Until WaitEvent=256 AND MenuHit=0 AND ItemHit=2
End

; *** MenuItem example 2
; *** Filename - MenuItem2.bb2

; *** Define menu title
MenuTitle 0,0,"Project"
; *** This option is a toggle item
; *** and has the keyboard short-cut
; *** right Amiga + T
MenuItem 0,3,0,0," Toggle ","T"
MenuItem 0,0,0,1,"QUIT"
; *** Open an Intuition display
Screen 0,3
Window 0,0,20,200,100,$100f,"Press right mouse",1,2
; *** Attach menu to window
SetMenu 0
; *** Repeat until QUIT option is selected
Repeat
Until WaitEvent=256 AND MenuHit=0 AND ItemHit=1
End

SUBITEM

Mode(s): Amiga/Blitz
Statement: create a sub-menu item
Syntax: SubItem MENULIST,FLAGS,MENU#,ITEM,SUB,TEXT$[,SHORT$]

All menu items may have an optional list of sub-menu items attached to them. This is where the
SUBITEM statement comes in.

The ITEM parameter specifies the menu item to attach the sub item to. SUB is the index number for this
sub item, those with number (0) appear at the top of the sub item list, followed by (1) and so on. The
TEXT$ parameter is the sub item text.

As with menu items, sub items may have keyboard shortcuts attached with the optional SHORT$
parameter (see the MENUITEM statement for details of the other parameters):

12.Menus

321

; *** SubItem example
; *** Filename - SubItem.bb2

; *** Define menu title
MenuTitle 0,0,"Project"
; *** Define menu option 0
MenuItem 0,0,0,0,"Load"
; *** Define menu option 0 sub-options
SubItem 0,0,0,0,0,"Picture"
SubItem 0,0,0,0,1,"Sample"
; *** Define menu option 1
MenuItem 0,0,0,1,"QUIT"
; *** Open an Intuition display
Screen 0,3
Window 0,0,20,200,100,$100f,"Press right mouse",1,2
; *** Attach menu to window
SetMenu 0
; *** Repeat until QUIT option is selected
Repeat
Until WaitEvent=256 AND MenuHit=0 AND ItemHit=1
End

12.1.2 Shape menu items
Shape menu items are the graphical elements which appear directly beneath menu titles. They use
pictures, instead of words, as options.

SHAPEITEM

Mode(s): Amiga/Blitz
Statement: create a graphical menu item
Syntax: ShapeItem MENULIST,FLAGS,MENU#,ITEM,SHAPE#

The SHAPEITEM statement is used to create a graphical menu item. As with the MENUITEM statement,
the FLAGS parameter controls the status of an individual menu item:

Table 12.2 : The FLAGS parameter

FLAG Description
===
0 Standard menu item
1 Toggle-type menu item (toggled by user)
2 Toggle-type menu item (toggled by FLAG 2 items)
3 As FLAG 1 but initially "On"
4 As FLAG 2 but initially "On"

12.Menus

322

The MENU# parameter is the number of the menu title under which the menu item will appear. ITEM is
the option number for the menu item. Menu items with an option number of (0) appear at the top of an
options list, followed by (1), and so on.

SHAPE# specifies the number of a previously initialised shape object to be used as the graphics. Here is
an example:

; *** ShapeItem example
; *** Filename - ShapeItem.bb2

; *** Open screen and grab its BitMap
Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0
; *** Create a shape
Cls 2
Boxf 30,30,60,60,5
Circlef 100,40,10,6
GetaShape 0,30,30,60,60
GetaShape 1,90,30,110,50
Cls
; *** Define menu title
MenuTitle 0,0,"Shape item"
; *** Define shape options
ShapeItem 0,0,0,0,0
ShapeItem 0,0,0,1,1
; *** Open Intuition window
Window 0,0,20,200,100,$100f,"Select a menu",1,2
; *** Attach menu to window
SetMenu 0
; *** Circle item quits
Repeat
Until WaitEvent=256 AND MenuHit=0 AND ItemHit=1
End

SHAPESUB

Mode(s): Amiga/Blitz
Statement: create a graphic sub-menu item
Syntax: ShapeSub MENULIST,FLAGS,MENU#,ITEM,SUBITEM,SHAPE#

SHAPESUB creates a graphical sub-menu item. The ITEM parameter specifies the menu item to attach
the sub item to. SUBITEM is the index number for this sub item, those with number (0) appear at the
top of the sub item list, followed by (1) and so on. The SUBTEXT$ parameter is the sub item text.

As with menu items, sub items may have keyboard shortcuts attached with the optional SHORTCUT$
parameter (see the SHAPEITEM statement for details of the other parameters). SHAPE# is the number of
a previously initialised shape object to be used as the graphic. For example:

12.Menus

323

; *** ShapeSub example
; *** Filename - ShapeSub.bb2

; *** Open screen and grab its BitMap
Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0
; *** Create a shape
Cls 2
Boxf 30,30,60,60,5
Circlef 100,40,10,6
GetaShape 0,30,30,60,60
GetaShape 1,90,30,110,50
Cls
; *** Define menu title
MenuTitle 0,0,"Shape item"
; *** Define shape option
ShapeItem 0,0,0,0,0
; *** Define shape sub-option
ShapeSub 0,0,0,0,0,1
; *** Open Intuition window
Window 0,0,20,200,100,$100f,"Select a menu",1,2
; *** Attach menu to window
SetMenu 0
; *** Circle item quits
Repeat
Until WaitEvent=256 AND MenuHit=0 AND ItemHit=0
End

12.2 Creating menus
To make a menu visible it must be attached to a window with the SETMENU statement.

SETMENU

Mode(s): Amiga
Statement: attach a MenuList to the current window
Syntax: SetMenu MENULIST

This statement attaches a MenuList to the currently used window. Each window may have only one
MenuList attached to it. For example:

; *** SetMenu example
; *** Filename - SetMenu.bb2

; *** Define a menu
MenuTitle 0,0,"Project"

12.Menus

324

MenuItem 0,0,0,0,"QUIT"
; *** Open an Intuition display
Screen 0,3
Window 0,0,20,200,100,$100f,"Press right mouse",1,2
; *** Attach menu to window
SetMenu 0
; *** Repeat until QUIT option is selected
Repeat
Until WaitEvent=256 AND MenuHit=0 AND ItemHit=0
End

12.3 Manipulating menus
The state, layout and colour of menus and menu options can be altered with the following MenuList
commands.

MENUCOLOUR

Mode(s): Amiga/Blitz
Statement: determine the colour of a menu item
Syntax: MenuColour COLOUR

The MENUCOLOUR statement is used to set the colour of the text in a menu item or sub item. Here is
an example:

; *** MenuColour example
; *** Filename - MenuColour.bb2

; *** Define menu title
MenuTitle 0,0,"Project"
; *** Alter text colour
MenuColour 3
MenuItem 0,0,0,0,"I want to"
; *** Alter text colour again
MenuColour 5
MenuItem 0,0,0,1,"QUIT"
; *** Open an Intuition display
Screen 0,3
Window 0,0,20,200,100,$100f,"Press right mouse",1,2
; *** Attach menu to window
SetMenu 0
; *** Repeat until QUIT option is selected
Repeat
Until WaitEvent=256 AND MenuHit=0 AND ItemHit=1
End

12.Menus

325

MENUGAP

Mode(s): Amiga/Blitz
Statement: control layout of a menu
Syntax: MenuGap X_GAP,Y_GAP

Executing MENUGAP before creating any menu titles, items or sub items, allows you to control the
layout of the menu. The X_GAP and Y_GAP parameters specify an amount, in pixels, to be inserted to
the left and right of all menu items and sub-menu items. Try the following example:

; *** MenuGap example
; *** Filename - MenuGap.bb2

; *** Set menu gap
MenuGap 60,30
; *** Define menu title
MenuTitle 0,0,"Project"
MenuItem 0,0,0,0,"QUIT"
; *** Open an Intuition display
Screen 0,3
Window 0,0,20,200,100,$100f,"Press right mouse",1,2
; *** Attach menu to window
SetMenu 0
; *** Repeat until QUIT optin is selected
Repeat
Until WaitEvent=256 AND MenuHit=0 AND ItemHit=0
End

SUBITEMOFF

Mode(s): Amiga/Blitz
Statement: control the position of sub items to menu options
Syntax: SubItemOff X_OFFSET,Y_OFFSET

The SUBITEMOFF statement controls the relative position of the top of a list of sub-menu items in
relation to their associated menu item:

; *** SubItemOff example
; *** Filename - SubItemOff.bb2

; *** Define menu title
MenuTitle 0,0,"Project"
MenuItem 0,0,0,0,"I want to"
; *** Set option offset
SubItemOff 80,80

12.Menus

326

SubItem 0,0,0,0,0,"Quit"
; *** Open an Intuition display
Screen 0,3
Window 0,0,20,200,100,$100f,"Press right mouse",1,2
; *** Attach menu to window
SetMenu 0
; *** Repeat until QUIT optin is selected
Repeat
Until WaitEvent=256 AND MenuHit=0 AND ItemHit=0
End

MENUSTATE

Mode(s): Amiga/Blitz
Statement: turn menu items on or off
Syntax: MenuState MENULIST[,MENU#[,ITEM[,SUB]]],On/Off

This statement is used to turn entire menus or parts of menus on or off. If the following syntax is used
then a whole active menu may be turned off:

MenuState MENULIST On/Off

If the MENU# parameter is included then a menu may be turned on or off:

MenuState MENULIST,MENU#,On/Off

Menu items and sub items can also be toggled by the inclusion of the appropriate parameters. Try the
following example which illustrates this:

; *** MenuState example
; *** Filename - MenuState.bb2

; *** Define menu title
MenuTitle 0,0,"Project"
MenuColour 3
; ** This item will be turned off
MenuItem 0,0,0,0,"Load"
; *** Open an Intuition display
Screen 0,3
Window 0,0,20,200,100,$100f,"Press right mouse",1,2
; *** Attach menu to window
SetMenu 0
MenuState 0,0,0,Off
; *** Wait for a mouse click

12.Menus

327

Repeat
Until WaitEvent=$8
End

MENUCHECKED

Mode(s): Amiga/Blitz
Function: read status of a toggle-type menu item
Syntax: s=MenuChecked(MENULIST,MENU#,ITEM[,SUBITEM])

This function reads the status of a toggle-type menu item or menu sub item. If the item is currently
"checked" then MENUCHECKED wil return (-1), otherwise (0) will be returned. For example:

; *** MenuChecked example
; *** Filename - MenuChecked.bb2

; *** Define menu title
MenuTitle 0,0,"Project"
MenuColour 3
MenuItem 0,1,0,0," Enable quit"
MenuItem 0,0,0,1,"QUIT"
; *** Open an Intuition display
Screen 0,3
Window 0,0,20,200,100,$100f,"Press right mouse",1,2
; *** Attach menu to window
SetMenu 0
Repeat
 ev.l=WaitEvent
 ; *** End if QUIT is enabled
 If ev=256 AND ItemHit=1
 If MenuChecked(0,0,0)
 End
 ; *** QUIT option is not enabled
 Else
 WLocate 0,0
 Print "Quit not enabled"
 EndIf
 EndIf
Forever

12.4 A full example
Here is a full example which demonstrates one of the practical applications of menus in Blitz Basic
programs. It is a very simple IFF image displayer. At present it can only load IFF files and clear them
from the screen. Why not try adding the ability to save screens, or add more options, such as screen
distortion and palette manipulation:

12.Menus

328

; *** Menu example
; *** Filename - MoreMenus.bb2

; *** First menu
MenuTitle 0,0,"PROJECT"
MenuItem 0,0,0,0,"LOAD ","L"
MenuItem 0,0,0,1,"SAVE ","S"
MenuItem 0,0,0,2,"QUIT ","Q"
; *** Second menu
MenuTitle 0,1,"SPECIAL"
MenuItem 0,0,1,0,"CLEAR ","C"
; *** Output screen and window
Screen 0,0,0,320,200,5,0,"Complete menu example",1,7
Window 0,0,0,320,200,$1900,"",1,0
; *** Attach MenuList to window
SetMenu 0
Repeat
 A.l=WaitEvent
 If A=256
 ; *** "LOAD" option
 If MenuHit=0 AND ItemHit=0
 MaxLen PATH$=160
 MaxLen NAME$=64
 A$=FileRequest$("Load",PATH$,NAME$)
 If A$<>""
 LoadScreen 0,A$,0
 Use Palette 0
 EndIf
 EndIf
 ; *** "QUIT" option
 If MenuHit=0 AND ItemHit=2 Then End
 ; *** "CLEAR" option
 If MenuHit=1 AND ItemHit=0 Then WCls
 EndIf
Forever

12.5 End-of-Chapter summary
Menus are created through the use of MenuList objects. Each MenuList contains an entire set of menu
titles, menu items and possibly sub-menu items.

MENUTITLE is used to create the Intuition menu titles which appear when the right mouse button is
held down.

The MENUITEM statement creates a text menu item.

The SHAPEITEM statement is used to create a graphical menu item.

All menu items may have an optional list of sub-menu items attached to them. This is achieved with the
SUBITEM and SHAPESUBITEM statements.

12.Menus

329

Menus are attached to windows by the SETMENU statement.

The layout of menus can be altered with MENUGAP and SUBITEMOFF.

Menu status can be read and altered with the MENUSTATE and MENUCHECKED commands.

Table 12.3 : Menu commands

Command Function
==
MENUCHECKED Read status of a toggle-type menu item
MENUCOLOUR Determine the colour of a menu item
MENUGAP Control layout of a menu
MENUITEM Create a text menu item
MENUSTATE Turn menu items on or off
MENUTITLE Add a menu title to a MenuList
SETMENU Attach a MenuList to the current window
SHAPEITEM Create a graphical menu item
SHAPESUB Create a graphic sub-menu item
SUBITEM Create a sub-menu item
SUBITEMOFF Control position of sub items to menu options

12.Menus

330

Chapter 13 : Gadgets
Gadgets are the boxes which appear when the program requires you to enter or alter information. They
are selected by clicking on the gadget once with the mouse pointer, although some gadgets require
you to enter text (string gadgets).

Note that all Blitz gadgets are created inside a previously initialised window. As a brief reminder, the
syntax of the WINDOW statement is as follows:

Window WINDOW#,X,Y,W,H,F,TITLE$,D,B[,G_LIST#[,BITMAP#]]

Gadgets are created through the use of GadgetList objects. This allows you to group several gadgets,
with differing identification numbers, under one GadgetList. This requires the presence of yet another
parameter in the window's definition.

The optional G_LIST# parameter is the number of a GadgetList object to be attached to the window. For
example:

; *** Gadgets example
; *** Filename - Gadgets.bb2

TextGadget 0,60,100,0,1," Quit "
Screen 0,3
Window 0,0,20,320,200,$100f,"Select a gadget",1,2,0
Repeat
Until WaitEvent=64 AND GadgetHit=1
End

All Blitz Basic gadgets need X and Y parameters, and some require you to specify the size of the gadget,
in pixels.

Let's begin with text gadgets, the simplest in Blitz Basic's repertoire...

13.1 Text gadgets
TEXTGADGET

Mode(s): Amiga/Blitz
Statement: add a text gadget to a GadgetList
Syntax: TextGadget GADGETLIST,X,Y,FLAGS,ID,TEXT$

The TEXTGADGET statement adds a text gadget to a GadgetList. A text gadget is the simplest type of
gadget, consisting of a sequence of characters surrounded by an optional border. X and Y specify the

331

co-ordinates of the gadget in the currently used window. The FLAGS parameter should be set as
follows:

Table 13.1 : The FLAGS parameter

Bit# Description
==================================
0 Toggle on/off
1 Relative to right of window
2 Relative to bottom of window
5 Box select

If BIT# 1 is set then the X parameter should be negative, and if BIT# 2 is set then the Y parameter
should be negative.

ID is a specific identification number, greater than zero, attached to this gadget. The TEXT$ parameter
holds the actual text string to appear in the gadget. Here is a full example:

; *** TextGadget example
; *** Filename - TextGadget.bb2

TextGadget 0,60,100,0,1," Quit "
TextGadget 0,170,100,0,2," Don't quit "
Screen 0,3
Window 0,0,20,320,200,$100f,"Select a gadget",1,2,0
Repeat
Until WaitEvent=64 AND GadgetHit=1
End

GADGETPENS

Mode(s): Amiga/Blitz
Statement: define text colours for text gadgets
Syntax: GadgetPens FOREGROUND[,BACKGROUND]

This statement sets the text colours used when text gadgets are created using the TEXTGADGET
statement. Obviously, the FOREGROUND parameter defines the foreground colour (default colour is 1)
and the optional BACKGROUND parameter, the background colour (default colour is 0). Try the
following example:

; *** GadgetPens example
; *** Filename - GadgetPens.bb2

GadgetPens 6
TextGadget 0,60,100,0,1," Quit "
GadgetPens 4,5

13.Gadgets

332

TextGadget 0,170,100,0,2," Don't quit "
Screen 0,3
Window 0,0,20,320,200,$100f,"Select a gadget",1,2,0
Repeat
Until WaitEvent=64 AND GadgetHit=1
End

GADGETJAM

Mode(s): Amiga/Blitz
Statement: determine text rendering method for text gadgets
Syntax: GadgetJam MODE

GADGETJAM controls the text rendering method when creating text gadgets. The MODE parameter is
identical to that of the WJAM statement in Chapter 11. Here is a brief reminder:

Table 13.2 : The MODE parameter

Value Mode Description
==
0 Jam1 Only the foreground colour to be printed
1 Jam2 Print foreground and background colours
2 Complement Print old characters that overlap with new ones (XOR)
4 Inverse Print inverse video characters

Try the following example:

; *** GadgetJam example
; *** Filename - GadgetJam.bb2

TextGadget 0,60,100,0,1," Quit "
GadgetJam 4
TextGadget 0,150,100,0,2," Inverse video "
Screen 0,3
Window 0,0,20,320,200,$100f,"Select a gadget",1,2,0
Repeat
Until WaitEvent=64 AND GadgetHit=1
End

13.1.1 Cycling text gadgets
Cycling gadgets are similar to text gadgets, however when they are selected by the user, another text
string is displayed in the gadget.

To create a cycling text gadget, use the "|" character in the TEXT$ parameter to seperate the options:

13.Gadgets

333

; *** TextGadget example 2
; *** Filename - TextGadget2.bb2

TextGadget 0,60,100,0,1," Quit "
TextGadget 0,170,100,0,2,"CYCLE |GADGET"
Screen 0,3
Window 0,0,20,320,200,$100f,"Cycle the gadget",1,2,0
Repeat
Until WaitEvent=64 AND GadgetHit=1
End

SETGADGETSTATUS

Mode(s): Amiga
Statement: set cycling gadget
Syntax: SetGadgetStatus GADGETLIST#,ID,VALUE

This statement sets the status of a cycling text gadget. The VALUE parameter is the number of the text
item to be displayed. The REDRAW statement should be used to update the gadget. Here's an example:

; *** SetGadgetStatus example
; *** Filename - SetGadgetStatus.bb2

TextGadget 0,60,100,0,1," Quit "
TextGadget 0,140,100,0,2,"First Option|Second option"
Screen 0,3
Window 0,0,20,320,200,$100f,"Window",1,2,0
SetGadgetStatus 0,2,2
Redraw 0,2
Repeat
Until WaitEvent=64 AND GadgetHit=1
End

GADGETSTATUS

Mode(s): Amiga
Function: return gadget status
Syntax: GadgetStatus(GADGETLIST#,ID)

This function returns the status of a gadget. If the specified gadget is a "toggle" type gadget then
GADGETSTATUS will return (-1) if the gadget is on, or (0) if the gadget is off. If the specified gadget is a
"cycling text" type gadget, then GADGETSTATUS will return a value representing the text item number.
For example:

13.Gadgets

334

; *** GadgetStatus example
; *** Filename - GadgetStatus.bb2

TextGadget 0,60,100,0,1," Quit "
TextGadget 0,170,100,0,2,"Blitz|Basic| Two "
Screen 0,3
Window 0,0,20,320,200,$100f,"Cycle Blitz gadget",1,2,0
Repeat
 WLocate 0,0
 NPrint "Cycle text ",GadgetStatus(0,2)
Until WaitEvent=64 AND GadgetHit=1
End

13.2 Shape gadgets
The SHAPEGADGET statement is used to create gadgets with graphic elements, taken from a previously
initialised shape bank.

SHAPEGADGET

Mode(s): Amiga/Blitz
Statement: add a shape gadget to a GadgetList
Syntax: ShapeGadget GADGETLIST,X,Y,FLAGS,ID,SHAPE#[,SHAPE2#]

SHAPE# is the number of the shape object to appear in the gadget. The FLAGS parameter should be set
as follows:

Table 13.3 : The FLAGS parameter

Bit# Description
==================================
0 Toggle on/off
1 Relative to right of window
2 Relative to bottom of window
5 Box select

All of the other parameters are the same as for the TEXTGADGET statement. If the optional SHAPE2#
parameter is included then an alternative shape may be displayed when the gadget is selected. For
example:

; *** ShapeGadget example
; *** Filename - ShapeGadget.bb2

Screen 0,3
ScreensBitMap 0,0

13.Gadgets

335

For A=7 To 1 Step -1
 Circlef 16,32,A*2,A
Next
GetaShape 0,0,16,32,32
Cls
ShapeGadget 0,148,50,0,1,0
TextGadget 0,140,180,0,2," Quit "
Window 0,0,20,320,200,$100f,"Select a gadget",1,2,0
Repeat
Until WaitEvent=64 AND GadgetHit=2
End

TOGGLE

Mode(s): Amiga/Blitz
Statement: turn a text or shape object on or off
Syntax: Toggle GADGETLIST,ID[,On/Off]

This statement is used to turn a toggle-type shape or text gadget on or off. If the optional On/Off
parameter is missing then the gadget will be toggled to its alternate state (i.e. if the gadget is currently
on then it will be toggled off, and vice versa). Toggle-type gadgets are those created with BIT# 0 set
(consult the TEXTGADGET statement for more information):

; *** Toggle example
; *** Filename - Toggle.bb2

TextGadget 0,60,100,0,1," Quit "
TextGadget 0,170,100,0,2," Toggled On "
Screen 0,3
Window 0,0,20,320,200,$100f,"Select a gadget",1,2,0
Toggle 0,2,On
Redraw 0,2
Repeat
Until WaitEvent=64 AND GadgetHit=1
End

13.3 String gadgets
The STRINGGADGET statement is used to create an Intuition "text input" gadget. When a string gadget
is selected, a text cursor appears and characters may be input into the gadget from the keyboard.

13.Gadgets

336

STRINGGADGET

Mode(s): Amiga/Blitz
Statement: add a text entry gadget to a GadgetList
Syntax: StringGadget GADGETLIST,X,Y,FLAGS,ID,LENGTH,WIDTH

X and Y control the gadgets horizontal and vertical position, in pixels, relative to the top left of the
currently used window.

FLAGS should be set as follows:

Table 13.4 : The FLAGS parameter

Bit# Description
==================================
1 Relative to right of window
2 Relative to bottom of window
5 Box select

If BIT# 1 is set then the X parameter should be negative, and if BIT# 2 is set then the Y parameter
should be negative.

The ID parameter is the number of the gadget.

The LENGTH parameter specifies the maximum number of characters that may appear in the gadget.

WIDTH specifies the width of the string gadget in pixels. If WIDTH is less than LENGTH then excess
characters will be scrolled in the gadget.

Here is a full example:

; *** StringGadget example
; *** Filename - StringGadget.bb2

StringGadget 0,80,16,0,1,40,160
StringGadget 0,80,32,0,2,40,160
TextGadget 0,8,180,0,3," QUIT "
Screen 0,3
Window 0,0,20,320,200,$100f,"Select a gadget",1,2,0
WLocate 8,8
Print "Name:"
WLocate 8,24
Print "Address:"
Repeat
Until WaitEvent=64 AND GadgetHit=3
End

13.Gadgets

337

13.3.1 Manipulating string gadgets
STRINGTEXT$

Mode(s): Amiga/Blitz
Function: return the contents of a string gadget
Syntax: c=StringText$(GADGETLIST,ID)

This function returns the contents of a string gadget. The GADGETLIST parameter specifies the number
of the GadgetList and the ID parameter specifies the number of the string gadget. For example:

; *** StringText$ example
; *** Filename - StringText$.bb2

StringGadget 0,80,16,0,1,40,160
TextGadget 0,8,180,0,2," QUIT "
Screen 0,3
Window 0,0,20,320,200,$100f,"Select a gadget",1,2,0
WLocate 4,8
Print "Name:"
Repeat
 ev.l=WaitEvent
 If ev=64 AND GadgetHit=1
 WLocate 8,96
 Print "Hello there "+StringText$(0,1)
 ClearString 0,1
 Redraw 0,1
 EndIf
Until ev=64 AND GadgetHit=2
End

ACTIVATESTRING

Mode(s): Amiga/Blitz
Statement: activate a string gadget
Syntax: ActivateString WINDOW#,ID

The ACTIVATESTRING statement is used to automatically activate a string gadget. Here is an example:

; *** ActivateString example
; *** Filename - ActivateString.bb2

StringGadget 0,80,16,0,1,40,160
TextGadget 0,8,180,0,2," QUIT "
Screen 0,3

13.Gadgets

338

Window 0,0,20,320,200,$100f,"Select a gadget",1,2,0
WLocate 4,8
Print "Type:"
ActivateString 0,1
Repeat
 ev.l=WaitEvent
Until ev=64 AND GadgetHit=2
End

RESETSTRING

Mode(s): Amiga/Blitz
Statement: reset a string gadget
Syntax: ResetString GADGETLIST,ID

RESETSTRING resets a string gadget and moves its cursor position to the left of the gadget.

CLEARSTRING

Mode(s): Amiga/Blitz
Statement: erase the text in a string gadget
Syntax: ClearString GADGETLIST,ID

This statement erases the contents of a string gadget (ID). If a string gadget is erased while it is
displayed in a window then the text will not be erased until the REDRAW statement is executed.

SETSTRING

Mode(s): Amiga/Blitz
Statement: initialize a string gadget
Syntax: SetString GADGETLIST,ID,STRING$

SETSTRING is used to initialise the contents of a string gadget created using the STRINGGADGET
statement. REDRAW may be used to update any changes.

Try the following example which demonstrates RESETSTRING, CLEARSTRING and SETSTRING:

; *** Manipulating string gadgets
; *** Filename - SetString.bb2

StringGadget 0,80,16,0,1,40,160
TextGadget 0,8,180,0,2," QUIT "
Screen 0,3
Window 0,0,20,320,200,$100f,"Select a gadget",1,2,0
WLocate 4,8

13.Gadgets

339

Print "Name:"
ActivateString 0,1
Repeat
 ev.l=WaitEvent
 If ev=64 AND GadgetHit=1
 ResetString 0,1
 ClearString 0,1
 SetString 0,1,"is cool!"
 ActivateString 0,1
 EndIf
Until ev=64 AND GadgetHit=2
End

13.4 Gadget groups
If a gadget group is defined then all button gadgets created become part of a mutually exclusive group.
This means that, if one gadget is selected, then all other gadgets of the same group become
unselected.

BUTTONGROUP

Mode(s): Amiga
Statement: define a number of button-type gadgets
Syntax: ButtonGroup GROUP

This statement is used to define a number of gadgets as being of the same, mutually exclusive group.
After BUTTONGROUP has been executed, all button gadgets created become part of this group. Try the
following example:

; *** ButtonGroup example
; *** Filename - ButtonGroup.bb2

Screen 0,10
TextGadget 0,48,14,0,0,"Cycle 1|Cycle 2|Cycle 3"
ButtonGroup 1
For A=1 To 5
 TextGadget 0,48,14+A*14,512,A,"Button "+Str$(A)
Next A
Window 0,20,20,160,100,$1008,"ButtonGroup",1,2,0
Repeat
 ev.l=WaitEvent
Until ev=$200
End

13.Gadgets

340

BUTTONID

Mode(s): Amiga
Function: return selected gadget in button group
Syntax: ButtonId(GADGETLIST#,BUTTONGROUP)

This function returns which gadget in a button group is currently selected. Here's an example:

; *** ButtonId example
; *** Filename - ButtonId.bb2

Screen 0,10
ButtonGroup 1
For A=1 To 5
 TextGadget 0,48,14+A*14,512,A,"Button "+Str$(A)
Next A
Window 0,20,20,320,100,$1008,"ButtonId",1,2,0
Repeat
 WLocate 45,4
 NPrint "Button ",ButtonId(0,1)," "
 ev.l=WaitEvent
Until ev=$200
End

13.5 Proportional gadgets
Proportional gadgets are commonly known as "slider bars", such as the gadgets that are used to scroll
the contents of Workbench windows around.

Prop gadgets have two main qualities: a potentiometer setting (or pot), and a body setting. The pot
setting specifies the current position of the slider bar, in the range zero to one. For example, a
proportional gadget with a pot setting of 0.5 would be positioned centrally. The body setting specifies
the size of the units the proportional gadget represents, in the range zero to one. The body setting also
alters the width of the slider bar.

Proportional gadgets may be either horizontal or vertical, or a combination of both.

PROPGADGET

Mode(s): Amiga/Blitz
Statement: create a proportional gadget
Syntax: PropGadget GADGETLIST,X,Y,FLAGS,ID,WIDTH,HEIGHT

This statement is used to create a proportional gadget. The X and Y parameters specify the position of
the gadget, relative to the top left of the currently used window. WIDTH and HEIGHT specify the size of
the proportional gadget, in pixels. ID is simply the identification number of the gadget.

13.Gadgets

341

The FLAGS parameter should be set as follows:

Table 13.5 : The FLAGS parameter

Bit# Description
====================================
1 Relative to right of window
2 Relative to bottom of window
3 Size relative to window width
4 Size relative to window height
5 Box select
6 Prop gadget has X movement
7 Prop gadget has Y movement
8 No border around prop gadget

If BIT# 1 is set then the X parameter should be negative, and if BIT# 2 is set then the Y parameter
should be negative. Here are some examples:

; *** Proportional gadgets
; *** Filename - PropGadget.bb2

FindScreen 0
PropGadget 0,130,25,128,0,16,54
Window 0,0,20,300,100,$100A,"",1,2,0
Repeat
 ev.l=WaitEvent
Until ev=$200
End

; *** Proportional gadgets 2
; *** Filename - PropGadget2.bb2

Screen 0,3
PropGadget 0,100,25,8+(7*8),0,100,50
Window 0,0,20,300,200,$100A,"",1,2,0
Repeat
 ev.l=WaitEvent
Until ev=$200
End

13.Gadgets

342

SETHPROP

Mode(s): Amiga/Blitz
Statement: change the horizontal slider qualities of a proportional gadget
Syntax: SetHProp GADGETLIST,ID,POT,BODY

The SETHPROP statement is used to change the horizontal slider qualities of a proportional gadget.
REDRAW may be used to update any changes. Here are some examples:

; *** SetHProp example
; *** Filename - SetHProp.bb2

FindScreen 0
PropGadget 0,130,25,128-64,0,120,24
; *** Position slider at left
SetHProp 0,0,0,0.3
Window 0,0,20,640,100,$100A,"",1,2,0
Repeat
 ev.l=WaitEvent
Until ev=$200
End

; *** SetHProp example 2
; *** Filename - SetHProp2.bb2

FindScreen 0
PropGadget 0,130,25,128-64,0,120,24
; *** Position slider at right
SetHProp 0,0,1,0.3
Window 0,0,20,640,100,$100A,"",1,2,0
Repeat
 ev.l=WaitEvent
Until ev=$200
End

; *** SetHProp example 3
; *** Filename - SetHProp3.bb2

FindScreen 0
PropGadget 0,130,25,128-64,0,120,24
; *** Change width of slider
SetHProp 0,0,0.5,0.1
Window 0,0,20,640,100,$100A,"",1,2,0
Repeat

13.Gadgets

343

 ev.l=WaitEvent
Until ev=$200
End

SETVPROP

Mode(s): Amiga/Blitz
Statement: change the vertical slider qualities of a proportional gadget
Syntax: SetVProp GADGETLIST,ID,POT,BODY

The SETVPROP statement is used to change the vertical slider qualities of a proportional gadget.
REDRAW may be used to update any changes. Here are some examples:

; *** SetVProp example
; *** Filename - SetVProp.bb2

FindScreen 0
PropGadget 0,130,25,128,0,16,54
; *** Position pot at top
SetVProp 0,0,0,0.5
Window 0,0,20,640,200,$100A,"",1,2,0
Repeat
 ev.l=WaitEvent
Until ev=$200
End

; *** SetVProp example 2
; *** Filename - SetVProp2.bb2

FindScreen 0
PropGadget 0,130,25,128,0,16,54
; *** Position pot at bottom
SetVProp 0,0,1,0.5
Window 0,0,20,640,200,$100A,"",1,2,0
Repeat
 ev.l=WaitEvent
Until ev=$200
End

; *** SetVProp example 3
; *** Filename - SetVProp3.bb2

FindScreen 0
PropGadget 0,130,25,128,0,16,54

13.Gadgets

344

; *** Smaller width of slider bar
SetVProp 0,0,0.5,0.1
Window 0,0,20,640,200,$100A,"",1,2,0
Repeat
 ev.l=WaitEvent
Until ev=$200
End

HPROPPOT

Mode(s): Amiga/Blitz
Function: return the horizontal pot setting of a proportional gadget
Syntax: hp=HPropPot(GADGETLIST,ID)

This function returns a number ranging from zero, up to but not including one, reflecting the horizontal
"pot" setting of a proportional gadget. For example:

; *** HPropPot example
; *** Filename - HPropPot.bb2

FindScreen 0
PropGadget 0,130,25,128-64,0,120,24
SetHProp 0,0,0.5,0.2
Window 0,0,20,640,100,$100A,"",1,2,0
Repeat
 ev.l=WaitEvent
 WLocate 0,0
 NPrint HPropPot(0,0)," "
Until ev=$200
End

HPROPBODY

Mode(s): Amiga/Blitz
Function: return the horizontal body setting of a proportional gadget
Syntax: hb=HPropBody(GADGETLIST,ID)

This function returns a number ranging from zero, up to but not including one, reflecting the horizontal
"body" setting of a proportional gadget. Example:

13.Gadgets

345

; *** HPropBody example
; *** Filename - HPropBody.bb2

FindScreen 0
PropGadget 0,130,25,128-64,0,120,24
SetHProp 0,0,0.5,0.3
Window 0,0,20,640,100,$100A,"",1,2,0
WLocate 0,0
; *** Returns 0.3
NPrint HPropBody(0,0)," "
Repeat
 ev.l=WaitEvent
Until ev=$200
End

VPROPPOT

Mode(s): Amiga/Blitz
Function: return the vertical pot setting of a proportional gadget
Syntax: vp=VPropPot(GADGETLIST,ID)

This function returns a number ranging from zero, up to but not including one, reflecting the vertical
"pot" setting of a proportional gadget. Try this example:

; *** VPropPot example
; *** Filename - VPropPot.bb2

FindScreen 0
PropGadget 0,130,25,128,0,16,54
Window 0,0,20,300,100,$100A,"",1,2,0
Repeat
 V=VPropPot(0,0)
 WLocate 0,0
 NPrint V," "
 ev.l=WaitEvent
Until ev=$200
End

VPROPBODY

Mode(s): Amiga/Blitz
Function: return the vertical body setting of a proportional gadget
Syntax: vb=VPropBody(GADGETLIST,ID)

13.Gadgets

346

This function returns a number ranging from zero, up to but not including one, reflecting the vertical
"body" setting of a proportional gadget. For example:

; *** VPropBody example
; *** Filename - VPropBody.bb2

FindScreen 0
PropGadget 0,130,25,128,0,32,64
SetVProp 0,0,0.5,0.3
Window 0,0,20,640,100,$100A,"",1,2,0
WLocate 0,0
; *** Returns 0.3
NPrint VPropBody(0,0)," "
Repeat
 ev.l=WaitEvent
Until ev=$200
End

Here is a full example which demonstrates the use of proportional-type gadgets:

; *** Palette Requester
; *** Filename - PaletteRequester.bb2

FindScreen 0
For A=0 To 2
 PropGadget 0,A*22+8,14,128,A,16,54
Next A
For B=0 To 3
 GadgetJam 1
 GadgetPens 0,B
 X=B AND 7
 Y=Int(B/8)
 TextGadget 0,X*28+72,14+Y*14,32,3+B," "
Next B
Window 0,100,50,300,72,$100A,"Palette requester",1,2,0
CC=0
Toggle 0,3+CC,On
Redraw 0,3+CC
Repeat
 SetVProp 0,0,1-Red(CC)/15,1/16
 SetVProp 0,1,1-Green(CC)/15,1/16
 SetVProp 0,2,1-Blue(CC)/15,1/16
 Redraw 0,0 : Redraw 0,1 : Redraw 0,2
 ev.l=WaitEvent
 If ev=$40 AND GadgetHit>2
 Toggle 0,3+CC,On : Redraw 0,3+CC
 CC=GadgetHit-3
 Toggle 0,3+CC,On : Redraw 0,3+CC
 EndIf
 If(ev=$20 OR ev=$40) AND GadgetHit<3

13.Gadgets

347

 r.b=VPropPot(0,0)*16
 g.b=VPropPot(0,1)*16
 b.b=VPropPot(0,2)*16
 RGB CC,15-r,15-g,15-b
 EndIf
Until ev=$200
End

REDRAW

Mode(s): Amiga/Blitz
Statement: redisplay a gadget
Syntax: Redraw WINDOW#,ID

The REDRAW statement redisplays a gadget in the specified window. This is primarily of use when
proportional gadgets or string gadgets have been altered. Example:

; *** Redraw example
; *** Filename - Redraw.bb2

TextGadget 0,60,100,0,1," Quit "
TextGadget 0,140,100,0,2,"First Option|Second option"
Screen 0,3
Window 0,0,20,320,200,$100f,"Window",1,2,0
SetGadgetStatus 0,2,2
Redraw 0,2
Repeat
Until WaitEvent=64 AND GadgetHit=1
End

13.6 Gadget borders
BORDERS

Mode(s): Amiga/Blitz
Statement: toggle automatic border creation/specify gadget-border spacing
Syntax: Borders On/Off
Syntax 2: Borders WIDTH,HEIGHT

BORDERS is one of a number of Blitz Basic statements with two purposes. The first syntax is used to
toggle automatic gadget border creation. Gadget borders are created when the TEXTGADGET or
STRINGGADGET statements are used. To disable this process use:

13.Gadgets

348

Borders Off

The BORDERS statement may also be used to specify the spacing between a gadget and its border. In
this case, the WIDTH parameter refers to the left/right spacing and HEIGHT refers to the top/bottom
spacing. Try the following example:

; *** Flower Borders
; *** Filename - Borders.bb2

Borders Off
TextGadget 0,8,16,0,1,"No borders"
Borders On
TextGadget 0,8,32,0,2,"Borders"
Borders 16,8
TextGadget 0,8,64,0,3,"Big borders"
Borders 8,4
TextGadget 0,8,180,0,4," QUIT "
Screen 0,3
Window 0,0,20,320,200,$100f,"Sliders",1,3,0
Repeat
Until WaitEvent=64 AND GadgetHit=4
End

BORDERPENS

Mode(s): Amiga/Blitz
Statement: define the colours used when gadget borders are created
Syntax: BorderPens HILIGHT_COLOUR,SHADOW_COLOUR

The BORDERPENS statement is used to define the colours used when gadget borders are created using
TEXTGADGET, STRINGGADGET and GADGETBORDER. The HILIGHT_COLOUR parameter specifies the
colour of the top and left edges of the border (default colour is 1) and SHADOW_COLOUR specifies the
colour of the right and bottom edges (default colour is 2). For example:

; *** BorderPens examples
; *** Filename - BorderPens.bb2

Borders Off
TextGadget 0,8,16,0,1,"No border"
Borders On
BorderPens 2,1
TextGadget 0,8,32,0,2,"Indented"
Borders 16,8
BorderPens 4,5

13.Gadgets

349

TextGadget 0,8,64,0,3,"Jolly"
Borders 8,4
BorderPens 1,2
TextGadget 0,8,180,0,4," QUIT "
Screen 0,3
Window 0,0,20,320,200,$100f,"Sliders",1,3,0
Repeat
Until WaitEvent=64 AND GadgetHit=4
End

GADGETBORDER

Mode(s): Amiga/Blitz
Statement: draw a rectangular border into the current window
Syntax: GadgetBorder X,Y,WIDTH,HEIGHT

This statement draws a rectangular border into the currently used window. Both proportional gadgets
and shape gadgets do not have borders automatically created for them, so GADGETBORDER can be
employed to do this. The X and Y parameters are the coordinates for the top left-hand corner of the
border, and WIDTH and HEIGHT specify the width and height, in pixels, of the border. Here is a full
example:

; *** GadgetBorder example
; *** Filename - GadgetBorder.bb2

Borders Off
TextGadget 0,8,16,0,1," No border "
Borders On
TextGadget 0,8,32,0,2," QUIT "
Screen 0,3
Window 0,0,20,320,200,$100f,"Sliders",1,3,0
VWait 100
GadgetBorder 12,15,80,10
Repeat
Until WaitEvent=64 AND GadgetHit=2
End

13.7 Disabling gadgets
These two statements can disable and enable gadgets respectively. If a gadget is disabled then it is
covered by a "mesh" and cannot be accessed by the user. Once a gadget is enabled, this mesh is
removed and the gadget can be accessed.

13.Gadgets

350

DISABLE

Mode(s): Amiga
Statement: disable gadget
Syntax: Disable GADGETLIST#,ID

ENABLE

Mode(s): Amiga
Statement: enable gadget
Syntax: Enable GADGETLIST#,ID

Example:

; *** Disable example
; *** Filename - Disable.bb2

TextGadget 0,60,100,0,1," Quit "
TextGadget 0,140,100,0,2,"Disabled gadget"
Disable 0,2
Screen 0,3
Window 0,0,20,320,200,$100f,"Window",1,2,0
Repeat
Until WaitEvent=64 AND GadgetHit=1
End

13.8 The GadTools Library
The GadTools library is an extension to the Blitz Basic system, which requires Kickstart 2.04 or greater.
GadTools allows you to create more functional interfaces, involving list gadgets, cycle gadgets and
highlight gadgets.

13.8.1 Basics of GadTools
All GadTools gadgets have a unique ID number, enabling you to mix standard Blitz gadgets with
GadTools.

GadTools gadgets have X, Y, W (width) and H (height) parameters which specify the location and
dimensions of the gadget. They also have a TEXT$ parameter which is used as a title for the gadget.

Unlike standard Blitz Basic gadgets, GadTools gadgets are attached to the window after it has been
opened. This is achieved with the ATTACHGTLIST statement.

13.Gadgets

351

ATTACHGTLIST

Mode(s): Amiga
Statement: attach GadTools gadgets to a window
Syntax: AttachGTList GTLIST#,WINDOW#

This statement is used to attach a series of GadTools gadgets to a window, after it has been opened.
Here's an example:

; *** AttachGTList example
; *** Filename - AttachGTList.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
Window 0,0,20,320,70,$1000,"A simple example",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

In all of the GadTools commands, where a FLAGS parameter is required, it should be set as follows:

Table 13.6 : The FLAGS parameter

Flag Description
======================================
1 Text label to left of gadget
2 Text label to right of gadget
4 Text label above gadget
8 Text label below gadget
$10 Text label inside gadget
$20 Gadget highlighted
$40 Gadget disabled
$80 Immediate flag
$100 Set Boolean gadget to (On)
$200 Attach arrows to scroller gadget
$400 Make GTPROPGADGET vertical

13.Gadgets

352

Here are some examples:

; *** FLAGS example 1
; *** Filename - FLAGS.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTNumber 0,1,150,30,60,20,"Left",1,100000
GTNumber 0,2,150,60,60,20,"Right",2,100000
GTNumber 0,3,150,100,60,20,"Above",4,100000
GTNumber 0,4,150,140,60,20,"Below",8,100000
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

; *** FLAGS example 2
; *** Filename - FLAGS2.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTMX 0,1,150,80,60,20,"Disabled",$40,"Blitz|Amiga"
GTCheckBox 0,2,150,110,60,20,"On",$100
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

13.8.2 Numeric gadgets
This statement creates a string gadget which only allows numbers to be entered by the user.

GTINTEGER

Mode(s): Amiga
Statement: create a number string gadget
Syntax: GTInteger GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS,DEFAULT

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget

13.Gadgets

353

respectively, again in pixels. TEXT$ is a text string, or title, for the gadget. DEFAULT is the number that
will initially appear in the box. Try the following example:

; *** GTInteger example
; *** Filename - GTInteger.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTInteger 0,1,150,80,60,20,"Enter a number",0,69
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

GTNUMBER

Mode(s): Amiga
Statement: create a read-only number gadget
Syntax: GTNumber GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS,VALUE

The GTNUMBER statement creates a read-only numeric gadget.

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget
respectively, again in pixels. TEXT$ is a text string, or title, for the gadget. The VALUE parameter is the
number to be displayed in the gadget:

; *** GTNumber example
; *** Filename - GTNumber.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTNumber 0,1,150,80,60,20,"Read only",0,100000
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

13.Gadgets

354

GTSETINTEGER

Mode(s): Amiga
Statement: update contents of a GTInteger or GTNumber gadget
Syntax: GTSetInteger GTLIST#,ID,VALUE

This statement updates and redraws the contents of a GTINTEGER or GTNUMBER gadget. VALUE is the
new number to be displayed. Here's an example:

; *** GTSetInteger example
; *** Filename - GTSetInteger.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTInteger 0,1,150,80,60,20,"Enter a number",0,69
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
GTSetInteger 0,1,39
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

GTGETINTEGER

Mode(s): Amiga
Function: return contents of a GTInteger or GTNumber gadget
Syntax: i=GTGetInteger(GTLIST#,ID)

GTGETINTEGER returns the contents of a GTINTEGER or GTNUMBER gadget. For example:

; *** GTGetInteger example
; *** Filename - GTGetInteger.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTInteger 0,1,150,80,60,20,"Enter a number",0,69
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
A=GTGetInteger(0,1)
WLocate 10,120
NPrint "Your number is ",A

13.Gadgets

355

VWait 50
End

13.8.3 Text and string gadgets
GTBUTTON is used to create a text gadget. A text gadget is the simplest type of gadget, consisting of a
sequence of characters (TEXT$) surrounded by a border.

GTBUTTON

Mode(s): Amiga
Statement: create a text string gadget
Syntax: GTButton GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget
respectively, again in pixels. TEXT$ is a text string, or title, for the gadget. For example:

; *** GTButton example
; *** Filename - GTButton.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTButton 0,1,100,10,90,20," Click me ",0
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

GTSTRING

Mode(s): Amiga
Statement: create a string gadget
Syntax: GTString GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS,CHARACTERS

The GTSTRING statement creates an Intuition-style "text input" gadget. When a string gadget is
selected, a text cursor appears and characters may be input into the gadget, from the keyboard.

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget
respectively, again in pixels. TEXT$ is a text string, or title, for the gadget. The CHARACTERS parameter
specifies the maximum number of characters that can be entered by the user. Try the following
example:

13.Gadgets

356

; *** GTString example
; *** Filename - GTString.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTString 0,1,100,80,100,20,"Name:",0,11
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

GTTEXT

Mode(s): Amiga
Statement: create a read-only text gadget
Syntax: GTText GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS,DISPLAY$

The GTTEXT statement creates a read-only text gadget.

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget
respectively, again in pixels. TEXT$ is a text string, or title, for the gadget. The DISPLAY$ parameter
specifies a text string to display in the gadget:

; *** GTText example
; *** Filename - GTText.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTText 0,1,100,80,150,30,"Read only:",0,"This is a message"
Window 0,0,20,320,200,0,"Howdy Partner!",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

13.Gadgets

357

GTSETSTRING

Mode(s): Amiga
Statement: update contents of a GTString or GTText gadget
Syntax: GTSetString GTLIST#,ID,TEXT$

This statement updates the contents of a GTSTRING or GTTEXT gadget. The TEXT$ parameter specifies
the new contents of the gadget. Example:

; *** GTSetString example
; *** Filename - GTSetString.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTString 0,1,100,80,100,20,"Name:",0,11
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
GTSetString 0,1,"Neil Wright"
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

GTGETSTRING

Mode(s): Amiga
Function: return contents of a GTString or GTText gadget
Syntax: s$=GTGetString(GTLIST#,ID)

The GTGETSTRING function returns the contents of a GTSTRING or GTTEXT gadget. Here is an example:

; *** GTGetString example
; *** Filename - GTGetString.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTString 0,1,100,80,100,20,"Name:",0,11
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
A$=GTGetString(0,1)
WLocate 10,120
NPrint "Your name is ",A$

13.Gadgets

358

VWait 50
End

13.8.4 Check box gadgets
GTCHECKBOX creates an Intuition-style check box. A check box is a gadget which toggles between on
(the box is filled with a tick) and off (the box is empty).

GTCHECKBOX

Mode(s): Amiga
Statement: create a check box gadget
Syntax: GTCheckBox GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget
respectively, again in pixels. TEXT$ is a text string, or title, for the gadget:

; *** GTCheckBox example
; *** Filename - GTCheckBox.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTCheckBox 0,1,110,80,60,20,"Click on me",0
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

13.8.5 Cycle gadgets
The GTCYCLE statement is used to create cycle gadgets, which offer the user a range of options.

GTCYCLE

Mode(s): Amiga
Statement: create a cycle gadget
Syntax: GTCycle GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS,OPTIONS$

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget
respectively, again in pixels. TEXT$ is a text string, or title, for the gadget. The OPTION$ paramater

13.Gadgets

359

should consist of a list of options seperated by the | character (located directly above the return key).
Here is an example:

; *** GTCycle example
; *** Filename - GTCycle.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTCycle 0,1,50,50,90,20,"Cycle",0,"Blitz|Basic|Is|Tops"
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

13.8.6 List gadgets
The next statement creates a list gadget. This is a gadget which contains a list of options which may be
highlighted by the user. These options must be contained in a string field of a Blitz Basic linked list. This
string field must be the second field, the first being a word type.

GTLISTVIEW

Mode(s): Amiga
Statement: create a list gadget
Syntax: GTListView GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS,LIST()

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget
respectively, again in pixels. TEXT$ is a text string, or title, for the gadget. Example:

; *** GTListView example
; *** Filename - GTListView.bb2

NEWTYPE .LIST
 A.w
 B$
End NEWTYPE
; *** First field (word type)
Dim List EMPTY.LIST(1000)
; *** Second field (string field)
Dim List GADGET.LIST(10)
While AddItem(GADGET()):GADGET()\B="Item #"+Str$(I)
 Let I+1
Wend
Screen 0,3+8

13.Gadgets

360

GTButton 0,0,10,10,60,20," QUIT ",0
GTListView 0,0,100,60,98,36,"GTListView",0,GADGET()
Window 0,0,20,320,200,$1000,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

GTCHANGELIST

Mode(s): Amiga
Statement: modify GTListView list
Syntax: GTChangeList GTLIST#,ID[,LIST()]

This statement is used to modify a GTLISTVIEW list. The correct procedure is as follows:

1. Execute GTCHANGELIST with no LIST() parameter.
2. Modify list.
3. Attach list with GTCHANGELIST and LIST() parameter.

For example:

; *** GTChangeList example
; *** Filename - GTChangeList.bb2

NEWTYPE .LIST
 A.w
 B$
End NEWTYPE
; *** First field (word type)
Dim List EMPTY.LIST(1000)
; *** Second field (string field)
Dim List GADGET.LIST(10)
While AddItem(GADGET()):GADGET()\B="Item #"+Str$(I)
 Let I+1
Wend
Screen 0,3+8
GTButton 0,0,10,10,60,20," QUIT ",0
GTListView 0,0,100,60,98,36,"GTListView",0,GADGET()
Window 0,0,20,320,200,$1000,"Window",1,0
AttachGTList 0,0
; *** Halve linked list
GTChangeList 0,0
For A=1 To 5
 KillItem GADGET()
Next A
; *** Add linked list
GTChangeList 0,0,GADGET()

13.Gadgets

361

Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

13.8.7 Highlight gadgets
GTMX creates an exclusive selection gadget. This is a gadget which consists of a number of options
which may be highlighted.

GTMX

Mode(s): Amiga
Statement: create highlight gadget
Syntax: GTMX GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS,OPTIONS$

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget
respectively, again in pixels. TEXT$ is a text string, or title, for the gadget. The OPTION$ paramater
should consist of a list of options seperated by the | character (located directly above the return key).
For example:

; *** GTMX example
; *** Filename - GTMX.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTMX 0,1,150,80,60,20,"",0,"Blitz|Amiga"
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

13.8.8 Palette gadgets
This statement is used to create a number of coloured box gadgets. One of its main uses is as a palette
selector.

GTPALETTE

Mode(s): Amiga
Statement: create colour box gadget
Syntax: GTPalette GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS,DEPTH

13.Gadgets

362

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget
respectively, again in pixels. TEXT$ is a text string, or title, for the gadget. The DEPTH parameter
specifies the number of box gadgets. For example:

; *** GTPalette example
; *** Filename - GTPalette.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTPalette 0,1,150,80,100,80,"Palette",0,5
Window 0,0,20,320,200,0,"Different",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

13.8.9 Proportional gadgets
As explained, proportional gadgets are "slider bars", such as the palette requesters in Electronic Art's
excellent Deluxe Paint series.

GTSCROLLER

Mode(s): Amiga
Statement: create a proportional gadget
Syntax: GTScroller GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS,VISIBLE,TOTAL

This statement creates a proportional gadget.

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget
respectively, again in pixels. TEXT$ is a text string, or title, for the gadget. The VISIBLE and TOTAL
parameters specify the amount of visible and total amount of data to scroll through. For example:

; *** GTScroller example
; *** Filename - GTScroller.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTScroller 0,1,150,80,60,20,"Move me",0,5,200,100
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent

13.Gadgets

363

Until GadgetHit=0
End

GTSLIDER

Mode(s): Amiga
Statement: create a proportional gadget
Syntax: GTSlider GTLIST#,ID,X,Y,W,H,TEXT$,FLAGS,MIN,MAX

This statement creates a proportional gadget for controlling the position of the display inside a larger
view.

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. The W and H parameters specify the width and height of the gadget
respectively, again in pixels. TEXT$ is a text string, or title, for the gadget. The MIN and MAX parameters
specify the minimum and maximum amount of data to scroll through. For example:

; *** GTSlider example
; *** Filename - GTSlider.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTSlider 0,1,150,80,60,20,"Move me",0,0,5
Window 0,0,20,320,200,0,"A Window",1,0
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

13.8.10 Shape gadgets
The GTSHAPE statement is used to create gadgets with graphic elements, taken from a previously
initialised shape bank.

GTSHAPE

Mode(s): Amiga
Statement: create a shape gadget
Syntax: GTShape GTLIST#,ID,X,Y,FLAGS,SHAPE1#[,SHAPE2#]

The X and Y parameters are the co-ordinates of the top-left of the gadget, relative to the window it is
"attached" to, in pixels. If the optional SHAPE2# parameter is included then an alternative shape may be
displayed when the gadget is selected. Try the following example:

13.Gadgets

364

; *** GTShape example
; *** Filename - GTShape.bb2

Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0
Boxf 30,30,60,60,3
GetaShape 0,30,30,60,60
Boxf 30,30,60,60,1
Locate 4,5
NPrint "Hi!"
GetaShape 1,30,30,60,60
GTButton 0,0,10,10,60,20," QUIT ",0
GTShape 0,1,190,80,0,0,1
Window 0,0,20,320,200,0,"Window",1,0
WLocate 10,90
NPrint "Click on square shape:"
AttachGTList 0,0
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

13.8.11 Gadget borders
GTBEVELBOX

Mode(s): Amiga
Statement: create border in current window
Syntax: GTBevelBox GTLIST#,X,Y,WIDTH,HEIGHT,FLAGS

This statement draws a rectangular border into the currently used window. The X and Y parameters are
the co-ordinates for the top left-hand corner of the border, and WIDTH and HEIGHT specify the width
and height, in pixels, of the border. Here is a full example:

; *** GTBevelBox example
; *** Filename - GTBevelBox.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
GTBevelBox 0,50,50,100,100,0
Repeat
 ev.l=WaitEvent

13.Gadgets

365

Until GadgetHit=0
End

13.8.12 Manipulating gadgets
GadTools gadgets, like Blitz gadgets, can be altered or updated during runtime.

GTTOGGLE

Mode(s): Amiga
Statement: toggle a toggle-type gadget
Syntax: GTToggle GTLIST#,ID[,On/Off]

This statement toggles a toggle-type gadget (On) or (Off). For example:

; *** GTToggle example
; *** Filename - GTToggle.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTCheckBox 0,1,110,80,60,20,"Click on me",0
Window 0,0,20,320,200,0,"Window",1,0
AttachGTList 0,0
For A=1 To 20
 VWait 20
 GTToggle 0,1
 Redraw 0,1
Next A
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

GTDISABLE

Mode(s): Amiga
Statement: disable a gadget
Syntax: GTDisable GTLIST#,ID

13.Gadgets

366

GTENABLE

Mode(s): Amiga
Statement: enable a gadget
Syntax: GTEnable GTLIST#,ID

These two statements can disable and enable gadgets respectively. If a gadget is disabled then it is
covered by a "mesh" and cannot be accessed by the user. Once a gadget is enabled, this mesh is
removed and the gadget can be accessed. Example:

; *** GTDisable/GTEnable example
; *** Filename - GTDisable.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
GTButton 0,1,130,80,120,20,"Disable/Enable",0
Window 0,0,20,320,200,0,"Window",1,0
GTDisable 0,1
AttachGTList 0,0
VWait 100
GTEnable 0,1
Redraw 0,1
Repeat
 ev.l=WaitEvent
Until GadgetHit=0
End

GTGADPTR

Mode(s): Amiga
Function: return location of GadTools gadget in memory
Syntax: g=GTGadPtr(GTLIST#,ID)

This function returns the exact location of a GadTools gadget in memory:

; *** GTGadPtr example
; *** Filename - GTGadPtr.bb2

Screen 0,3
GTButton 0,0,10,10,60,20," QUIT ",0
Window 0,0,20,320,200,0,"A Window",1,0
AttachGTList 0,0
WLocate 5,80
Print "Location of gadget : ",GTGadPtr(0,0)

13.Gadgets

367

MouseWait
End

13.9 End-of-Chapter summary
A text gadget is the simplest type of gadget, consisting of a sequence of characters surrounded by an
optional border.

The STRINGGADGET statement is used to create an Intuition "text input" gadget.

The SHAPEGADGET statement is used to create gadgets with graphic elements.

Proportional gadgets, or "slider bars", are the gadgets that are used to scroll the contents of
Workbench windows around.

The GadTools library allows you to create more functional interfaces, involving list gadgets, cycle
gadgets and highlight gadgets.

All gadgets can be enabled and disabled.

13.Gadgets

368

Chapter 14 : AGA

14.1 Advanced Graphics Architecture
The Amiga 1200 and 4000 series of computers are built around the AGA (Advanced Graphics
Architecture) custom chipset, which supersedes the chipsets of earlier Amigas in graphics capability. The
AGA (AA) chipset supports two to 256 colour register modes in resolutions from 320*200 to 1280*400
pixels. All colour display modes can display up to 256 colours from a palette of 16.8 million. Sprites can
be displayed in high resolution and up to four times larger and the new HAM-8 mode, available in any
display resolution, can display over 256,000 colours at once, from the 16.8 million colour palette.

Naturally, Blitz Basic 2 can take full control over the AGA chipset with the new Display Library. The
library is an alternative to the Slice series of commands (consult the Chapter 6 for further information).
Instead of simply extending the Slice library to support the new chipset, those clever people at Acid
Software chose to develop a completely new set of commands.

Besides support for extended sprites, super hi-resolution scrolling and up to eight bitplanes, a more
modular method of creating displays has been implemented with the use of CopLists. CopLists need
only be initialised once at the start of the program. Displays can then be created using and combination
of CopLists and, most importantly, the CreateDisplay command does not allocate any memory, thus
avoiding any memory fragmenting problems.

Yes, I do know that this chapter is entitled "AGA", but the new display library is also semi-compatible
with pre-AGA Amigas. CopLists can be created on ECS Amigas, however none of the AGA-specific flags
(i.e. super high-resolution or 128/256 colours), nor any of the AGA-specific commands may be used on
pre-AGA Amigas. You have been warned!

14.2 Creating a CopList
INITCOPLIST

Mode(s): Amiga/Blitz
Statement: create a CopList
Syntax: InitCopList LIST#,Y,H,FLAGS,SPRITES,COLS,CUSTOM

The INITCOPLIST statement, as its name implies, is used to create a CopList for use with the
CREATEDISPLAY statement.

The Y and H parameters specify the vertical positioning and height of the CopList respectively. The Y
parameter specifies the vertical location of the top of the CopList, ranging from 44 to the bottom of the
current display. In other words, a value of 44 displays the CopList at the very top of the display.

The FLAGS parameter holds information on the number of colours, resolution etc. of the CopList (more
on this later).

SPRITES specifies the number of sprites that can be displayed in the CopList (this should always be set
to eight!).

369

The COLS parameter specifies the number of colours in the CopList, and the CUSTOM parameter should
always be set to zero.

These are the FLAGS to be used with INITCOPLIST:

Table 14.1 : Screen Modes

Mode Flag
===========================
Low-Res Mode $00000
Hi-Res Mode $00100
Super Hi-Res Mode $00200

Table 14.2 : Screen Colours

Colours Flag
===========================
2 Colours $00001
4 Colours $00002
8 Colours $00003
16 Colours $00004
32 Colours $00005
64 Colours $00006
128 Colours $00007
256 Colours $00008

Table 14.3 : New Flags

Option Flag
===========================
24-Bit palette $10000
Fetch Mode : Single $00000
 : Double $01000
 : Triple $03000

Table 14.4 : Screen Options

Option Flag
===========================
Smooth-Scroll $00010
Dual-Playfield $00020
Extra Half Bright $00040
Hold And Modify $00080

14.AGA

370

Table 14.5 : Sprite Modes

Mode Flag
===========================
Low-Res sprites $00000
Hi-Res sprites $00400
Super Hi-Res sprites $00800

To use more than one flag, you simply add them together using the "+" operator. This example would
give you a 24-Bit palette, 256 colour CopList:

; *** InitCopList example
; *** Filename - InitCopList.bb2

; *** Pop into Blitz mode
BLITZ
; *** Open BitMap (256 colours)
BitMap 0,320,256,8
; *** Initialize CopList (256 colours)
InitCopList 0,44,256,$10000+$00008,8,256,0
; *** Set up screen display
CreateDisplay 0
; *** Attach BitMap to CopList
DisplayBitMap 0,0
MouseWait
End

Or:

; *** InitCopList example 2
; *** Filename - InitCopList2.bb2

BLITZ
BitMap 0,320,256,8
InitCopList 0,44,256,$10000+$03000+$00100+$00008,8,256,0
; *** Set up screen display
CreateDisplay 0
; *** Attach BitMap to CopList
DisplayBitMap 0,0
MouseWait
End

Which would give you a 24-Bit palette, triple fetch, hi-resolution, 256 colour CopList.

14.AGA

371

14.2.1 Multiple CopLists
You can also display multiple CopLists on a single BitMap. The following example demonstrates this:

; *** Multiple CopLists
; *** Filename - MultiCopList.bb2

; *** Open BitMap (256 colours)
BitMap 0,320,256,8
; *** Alter palette
For A=0 To 255
 AGAPalRGB 0,A,A,0,A
Next
; *** Open 2 CopLists
InitCopList 0,44,120,$13008,8,256,0
InitCopList 1,44+132,120,$13008,8,256,0
BLITZ
CreateDisplay 0,1
; *** Display CopList 0 in BitMap
DisplayBitMap 0,0
DisplayPalette 0,0
; *** Display CopList 1 in BitMap
DisplayBitMap 1,0
DisplayPalette 1,0
; *** Draw some BitMap graphics
For B=0 To 130
 Boxf B,B,320-B,255-B,B
Next
MouseWait
End

14.2.2 Non-AGA CopLists
The INITCOPLIST statement can also be used to create non-AGA displays, however only low-resolution
sprites, single fetch mode, and a maximum of 64 colours are allowed:

; *** 2 colour CopList
; *** Filename - InitCopList3.bb2

BLITZ
BitMap 0,320,256,1
; *** Low-resolution 2 colour CopList
InitCopList 0,44,256,$00001,8,2,0
; *** Set up screen display
CreateDisplay 0
; *** Attach BitMap to CopList
DisplayBitMap 0,0

14.AGA

372

MouseWait
End

This is the same as the following SLICE example:

; *** Slice Vs CopList
; *** Filename - Sliced.bb2

BLITZ
BitMap 0,320,256,1
Slice 0,44,1
Show 0
MouseWait
End

CREATEDISPLAY

Mode(s): Amiga/Blitz
Statement: setup screen display
Syntax: CreateDisplay LIST#[,LIST#...]

CREATEDISPLAY is used to set up a new screen display with the new display library. Any number of
CopLists can be passed to CREATEDISPLAY although at present they must be in order of vertical
position and not overlap. CREATEDISPLAY then links the CopLists together using internal pointers.
BitMaps, colours and sprites attached to CopLists are not affected. Here is a simple example:

; *** CreateDisplay example
; *** Filename - CreateDisplay.bb2

; *** Set colour 0 to black
AGAPalRGB 0,0,0,0,0
BLITZ
BitMap 0,320,256,8
; *** 256 colour, 24-Bit CopList
InitCopList 0,44,256,$10000+$00008,8,256,0
; *** Attach palette to display
DisplayPalette 0,0
; *** Set up screen display
CreateDisplay 0
; *** Attach BitMap to CopList
DisplayBitMap 0,0
MouseWait
End

14.AGA

373

14.3 Displaying a BitMap in a CopList
DISPLAYBITMAP

Mode(s): Amiga/Blitz
Statement: show CopList
Syntax: DisplayBitMap LIST#,BITMAP#[,X,Y][,BITMAP2#[X2,Y2]]

The DISPLAYBITMAP statement is used to display a BitMap in the specified CopList. If the optional X
and Y parameters are included then the BitMap is positioned at these co-ordinates. Example:

; *** DisplayBitmap example
; *** Filename - DisplayBitmap.bb2

For COL=0 To 254
 AGAPalRGB 0,COL,COL,COL,COL
Next COL
BLITZ
BitMap 0,320,256,8
InitCopList 0,44,256,$10000+$00008,8,256,0
; *** Set up screen display
CreateDisplay 0
; *** Attach palette to display
DisplayPalette 0,0
; *** Attach BitMap to CopList
DisplayBitMap 0,0
For A=0 To 200
 Circle Rnd(320),Rnd(250),Rnd(30)+10,A
Next A
MouseWait
End

If the BitMap is physically larger than the CopList then the DISPLAYBITMAP statement may be used to
scroll the BitMap about the display.

With AGA machines, the X positioning of low-resolution and hi-resolution CopLists uses the fractional
part of the X parameter for super-smooth scrolling. The CopList must be initialised with the smooth-
scrolling flag ($00010) set if the X and Y parameters are used.

For dual-playfield CopLists (flag $00020), if the optional BITMAP2# parameter is included then a second
BitMap is displayed in the background of the CopList (the first BitMap (BITMAP#) is displayed in the
foreground). If the optional X2 and Y2 parameters are included then the background BitMap is
positioned at these co-ordinates.

14.AGA

374

The following example uses DISPLAYBITMAP to scroll an AGA starfield:

; *** DisplayBitMap example 2
; *** Filename - DisplayBitMap2.bb2

; *** Create colour palette
For A=0 To 255
 AGAPalRGB 0,A,A,0,0
Next A
BLITZ
BitMap 0,640,256,8
; *** 256 colour, 24-Bit, smooth-scroll CopList
InitCopList 0,44,256,$10000+$00008+$00010,8,256,0
; *** Attach palette to display
DisplayPalette 0,0
; *** Set up screen display
CreateDisplay 0
; *** Attach BitMap to CopList
DisplayBitMap 0,0
; *** Plot starfield
For B=0 To 2500
 Plot Rnd(640),Rnd(250),Rnd(254)+1
Next B
; *** Scroll BitMap
Repeat
 VWait
 DisplayBitMap 0,0,X,0
 X=QWrap(X+1,0,640)
Until Joyb(0)>0
MouseWait
End

14.4 Palettes
Palette objects, or palettes, are temporary storage areas of colour information. This information can be
taken either from an IFF file or created from scratch.

The LOADPALETTE statement can be used to load a palette object from disk (consult Chapter 7 for more
information).

If colour information is created by the user then it will not affect the current display colours until the
DISPLAYPALETTE statement has been executed.

DISPLAYPALETTE

Mode(s): Amiga/Blitz
Statement: copy colour information to CopList
Syntax: DisplayPalette LIST#,PALETTE#[,COLOUR_OFFSET]

14.AGA

375

This statement copies colour information from a Palette to the CopList specified. It is similar in usage to
the USE PALETTE statement. Here is an example:

; *** 256 colour CopList
; *** Filename - DisplayPalette.bb2

BLITZ
; *** Define palette
For A=0 To 255
 AGAPalRGB 0,A,A,0,0
Next A
BitMap 0,320,256,8
; *** 256 colour, 24-Bit CopList
InitCopList 0,44,256,$10000+$00008,8,256,0
; *** Attach palette to display
DisplayPalette 0,0
; *** Set up screen display
CreateDisplay 0
; *** Attach BitMap to CopList
DisplayBitMap 0,0
; *** Create BitMap graphics
For A=0 To 1500
 Circlef Rnd(320),Rnd(256),Rnd(20)+1,Rnd(254)+1
Next A
MouseWait
End

AGAPALRGB

Mode(s): Amiga/Blitz
Statement: set a colour register within a palette object
Syntax: AGAPalRGB PALETTE#,REGISTER,RED,GREEN,BLUE

The AGAPALRGB statement allows you to set an individual colour register within a palette object. The
colour change will not become evident until either of the USE PALETTE or DISPLAY PALETTE statements
is used. Try the following example:

; *** AGAPalRGB example
; *** Filename - AGAPalRGB.bb2

BLITZ
; *** Define palette
For A=0 To 255
 AGAPalRGB 0,A,0,A,0
Next A
BitMap 0,320,256,8
; *** 256 colour, 24-Bit CopList

14.AGA

376

InitCopList 0,44,256,$10000+$00008,8,256,0
; *** Attach palette to display
DisplayPalette 0,0
; *** Set up screen display
CreateDisplay 0
; *** Attach BitMap to CopList
DisplayBitMap 0,0
; *** Draw BitMap graphics
For B=0 To 254
 X=Rnd(320)
 Y=Rnd(256)
 Boxf X,Y,X+Rnd(50),Y+Rnd(50),B
Next B
MouseWait
End

AGARGB

Mode(s): Amiga
Statement: set a colour register to an RGB colour value
Syntax: AGARGB REGISTER,RED,GREEN,BLUE

AGARGB allows you to set an individual colour register in a palette to an RGB colour value. AGARGB
does not affect palette objects.

The AGARED, AGAGREEN and AGABLUE statements return the amount of their respected colour in a
specified colour register. The returned values range from zero to 255.

AGARED

Mode(s): Amiga
Function: return the amount of RGB red in a colour register
Syntax: r=AGARed(REGISTER)

AGAGREEN

Mode(s): Amiga
Function: return the amount of RGB green in a colour register
Syntax: g=AGAGreen(REGISTER)

14.AGA

377

AGABLUE

Mode(s): Amiga
Function: return the amount of RGB blue in a colour register
Syntax: b=AGABlue(REGISTER)

14.5 A full example
The following example demonstrates the correct procedure for displaying AGA graphics in Blitz Basic.
Remember to replace the filename below with the name of an AGA file to load, otherwise the program
will fail - I personally reccommend the Tutankhamun picture from DeluxePaint IV AGA:

; *** AGA display example
; *** Filename - AGA.bb2

BitMap 0,320,DispHeight,8
; *** Load AGA picture plus palette
LoadBitMap 0,"FILENAME.IFF"
LoadPalette 0,"FILENAME.PALETTE",0
; *** Create 256 colour CopList
InitCopList 0,34,200,$10418,8,256,0
BLITZ
Mouse On
MouseArea 0,0,320,DispHeight
; *** Set up screen display
CreateDisplay 0
; *** Attach palette to display
DisplayPalette 0,0
; *** Scroll BitMap with mouse
While Joyb(0)=0
 VWait
 DisplayBitMap 0,0,MouseX,0
Wend
End

14.6 AGA Sprite handling
AGA Sprites are initialised by either loading them from disk, or by converting a shape object into a
sprite object using the GETASPRITE statement.

Sprites are handled entirely by the Amiga's hardware so they do not interfere or corrupt BitMap
graphics in any way. AGA Sprites can be displayed in high-resolution and up to four times larger than
normal!

14.AGA

378

DISPLAYSPRITE

Mode(s): Blitz
Statement: position a sprite
Syntax: DisplaySprite LIST#,SPRITE#,X,Y,CHANNEL

DISPLAYSPRITE is used to display a sprite in a CopList. LIST# is the number of the CopList to display the
sprite on and SPRITE# is the sprite number (taken from a previously initialised sprite bank). The X and Y
parameters specify the co-ordinates of the sprite, in pixels, and the CHANNEL parameter specifies the
sprite channel to be used to display the sprite:

; *** DisplaySprite example
; *** Filename - DisplaySprite.bb2

BLITZ
; *** Define palette
For COLS=0 To 16
 AGAPalRGB 0,COLS,COLS,0,0
Next COLS
BitMap 0,320,256,4
; *** Make a sprite
For A=4 To 10
 Boxf 10+A*2,10+A*2,55-A*2,55-A*2,A
Next A
GetaShape 0,10,10,40,40
GetaSprite 0,0
Cls
; *** Create CopList
InitCopList 0,44,256,$00001,8,16,0
; *** Attach palette to display
DisplayPalette 0,0
; *** Set up screen display
CreateDisplay 0
; *** Attach BitMap to CopList
DisplayBitMap 0,0
; *** Move sprite
For X=1 To 260
 VWait
 DisplaySprite 0,0,X,50,0
Next X
End

14.AGA

379

SPRITEMODE

Mode(s): Amiga/Blitz
Statement: define the width of sprites to be used
Syntax: SpriteMode MODE

SPRITEMODE specifies the width of sprites to be used in a Blitz Basic program:

Table 14.6 : The MODE parameter

MODE Sprite width
==================
0 16
1 32
2 64

For example:

; *** SpriteMode example
; *** Filename - SpriteMode.bb2

; *** Set sprite width to 64 pixels
SpriteMode 2
BLITZ
; *** Define palette
For COLS=0 To 16
 AGAPalRGB 0,COLS,COLS,0,0
Next COLS
BitMap 0,320,256,4
; *** Make a sprite
Boxf 0,0,64,64,6
GetaShape 0,0,0,64,64
GetaSprite 0,0
Cls
; *** Create CopList
InitCopList 0,44,256,$00001,8,16,0
; *** Attach palette to display
DisplayPalette 0,0
; *** Set up screen display
CreateDisplay 0
; *** Attach BitMap to CopList
DisplayBitMap 0,0
; *** Move sprite
For X=1 To 260
 VWait
 DisplaySprite 0,0,X,50,0

14.AGA

380

Next X
End

14.7 End-of-Chapter summary
The new display library is an alternative to the Slice commands. Slices are replaced by CopLists, a more
modular method of creating displays.

CopLists can use from two to 256 colours from a palette of 16.8 million. CopLists can be created on ECS
Amigas, however none of the AGA-specific flags (i.e. super hi-resolution or 128/256 colours), nor any of
the AGA-specific commands may be used on pre-AGA Amigas.

The DISPLAYBITMAP statement can be used to scroll a super-BitMap (one larger than the physical
display) around a CopList.

Sprites can be up to 64 pixels in width and displayed in high-resolution.

14.AGA

381

Chapter 15 : System Functions
This chapter will show you how to design software which can dynamically adjust itself to different
displays (NTSC or PAL). It will show you how to obtain information about Blitz Basic objects, the system
processor and the Workbench screen. You will also learn about the BREXX system.

15.1 Display heights
In the United Kingdom we have adopted the PAL (I) standard of television system. However, half of the
world use the NTSC system. This is where the programmer's problems begin.

PAL updates 50 times a second (50Hz) and can display a maximum of 256 horizontal lines. NTSC,
however, updates 60 times a second (60Hz), and can only display a maximum of 200 horizontal lines.

The update problem can be overcome by making sure that all time-essential routines can be executed
in under a sixtieth of a second. If you don't make allowances for this then your programs will appear
jerky on the other system. This is because, although the VWAIT statement can be used to tie-in screen
syncronisation, its delay varies between PAL and NTSC systems.

The screen height problem is also relatively easy to work around. Say, for example, you have created a
piece of software on a PAL system which uses a screen display of 320 by 256 pixels. Under the NTSC
system the bottom part of the screen would be hidden from view! This is where the following two
commands come in.

NTSC

Mode(s): Amiga/Blitz
Function: identify NTSC or PAL machines
Syntax: n=NTSC

The NTSC function is used to identify whether or not an NTSC machine is in use. The function returns
(-1) if the display is currently in NTSC mode and (0) if the display is in PAL mode. This is primarily of use
when designing software which can dynamically adjust itself to different displays. For example:

; *** NTSC example
; *** Filename - NTSC.bb2

If NTSC
 ; *** The good old U.S of A (probably!)
 NPrint "NTSC mode"
Else
 ; *** We're in England, mate!
 NPrint "PAL mode"
EndIf
MouseWait
End

382

DISPHEIGHT

Mode(s): Amiga/BLitz
Function: return maximum available screen height
Syntax: d=DispHeight

This function returns a value of 256 if it is executed in PAL mode, or 200 if executed on an NTSC Amiga:

; *** DispHeight example
; *** Filename - DispHeight.bb2

NPrint DispHeight," pixels high"
MouseWait
End

15.2 Object handling
Objects are structures designed to control multiple system elements, such as graphics, files and screens.
Here is a list of the Blitz Basic 2 objects:

Table 15.1 : Blitz Basic objects

Object Description
================================
BitMaps Display elements
Blitzfonts BitMap fonts
CopLists Display elements
Files File handling
GadgetLists Intuition gadgets
Intuifonts Intuition fonts
MenuLists Intuition menus
Modules Tracker music
Palettes Palette information
Screens Intuition screens
Shapes Blitter objects
Sounds Samples
Sprites Hardware sprites
Windows Intuition windows

All objects can be created, manipulated and destroyed, or deleted. The manipulation of the above
objects has been covered in the previous chapters. Objects can also be controlled with the following
commands.

15.System Functions

383

USE

Mode(s): Amiga/Blitz
Statement: set specified object as current object
Syntax: Use NAME OBJECT#

The USE statement sets the current object (NAME) as number OBJECT#. NAME can be any object, such
as Screen, Slice, BitMap, Window etc. The OBJECT# parameter specifies the object number. Try the
following example:

; *** Use example
; *** Filename - Use.bb2

; *** Open a screen and grab its BitMap
Screen 0,3,"Back"
ScreensBitMap 0,0
; *** Enable text output
BitMapOutput 0
; *** Open screen at front of display
Screen 1,0,30,320,200,3,0,"Front",1,2
; *** Set current screen as 0
Use Screen 0
Locate 0,2
NPrint "I feel Used!"
MouseWait
End

FREE

Mode(s): Amiga/Blitz
Statement: free the specified object
Syntax: Free NAME OBJECT#

FREE is used to remove a specified object. All Blitz Basic objects can be removed with the FREE
statement (e.g. Free BitMap 0). NAME can be any object, such as Screen, Slice, BitMap, Window etc. The
OBJECT# parameter specifies the object number. Objects are automatically freed when a program ends.
For example:

; *** Free example
; *** Filename - Free.bb2

; *** Open a simply screen
Screen 0,3,"Bye!"
VWait 100

15.System Functions

384

; *** Remove screen from display
Free Screen 0
MouseWait
End

USED

Mode(s): Amiga/Blitz
Function: return currently used object number
Syntax: u=Used NAME

This function returns the currently used object number. NAME can be any object, such as Screen, Slice,
BitMap, Window etc. Here's an example:

; *** Used example
; *** Filename - Used.bb2

; *** Nip into Blitz mode
BLITZ
; *** Open a Blitz mode display
BitMap 1,320,256,3
BitMapOutput 1
Slice 2,44,3
Show 1
; *** Return BitMap number (1)
NPrint "BitMap number = ",Used BitMap
; *** Return Slice number (2)
NPrint "Slice number = ",Used Slice
MouseWait
End

ADDR

Mode(s): Amiga/Blitz
Function: return address of object in memory
Syntax: a=Addr NAME(OBJECT#)

The ADDR function returns the address of a particular object in memory. NAME can be any object, such
as Screen, Slice, BitMap, Window etc. The OBJECT# parameter specifies the object number. Try this
example:

15.System Functions

385

; *** Addr example
; *** Filename - Addr.bb2

; *** Pop into Blitz mode
BLITZ
; *** Open Blitz mode display
BitMap 0,320,256,3
Slice 0,44,3
Show 0
BitMapOutput 0
; *** Return address of Slice
NPrint "Slice object 0 is at: ",Addr Slice(0)
MouseWait
End

MAXIMUM

Mode(s): Amiga/Blitz
Function: return maximum setting for an object
Syntax: m=Maximum NAME

MAXIMUM reutrns the maximum setting for an object (i.e. the maximum number of the object allowed
by Blitz). NAME can be any object, such as Screen, Slice, BitMap, Window etc. Maximum settings are
entered into the "OPTIONS" requester of the "COMPILER" menu of the Blitz Basic editor. Example:

; *** Maximum example
; *** Filename - Maximum.bb2

NPrint "Maximum screens = ",Maximum Screen
NPrint "Maximum windows = ",Maximum Window
NPrint "Maximum menus = ",Maximum Menus
NPrint "Maximum Slices = ",Maximum Slice
MouseWait
End

15.3 System date and time
The following statements and functions can be used to read and manipulate the system date and time,
as displayed on the Workbench screen.

15.System Functions

386

SYSTEMDATE

Mode(s): Amiga
Function: return the system date
Syntax: s=SystemDate

The SYSTEMDATE function returns the system date as the number of days passed since 1/1/1978. For
example:

; *** SystemDate example
; *** Filename - SystemDate.bb2

NPrint SystemDate," days passed"
MouseWait
End

DATE$

Mode(s): Amiga
Function: return system date (formatted)
Syntax: d$=Date$(DAYS)

DATE$ converts the format returned by SystemDate (days passed since 1/1/1978) into a string format of
dd/mm/yyyy or mm/dd/yyyy depending on the date format (defaults to 0). Here is an example:

; *** Date$ example
; *** Filename - Date$.bb2

NPrint Date$(SystemDate)
MouseWait
End

NUMDAYS

Mode(s): Amiga
Function: return system date (day count)
Syntax: n=NumDays(DATE$)

This function converts a string created using DATE$ to the relevant day count since 1/1/1978. Example:

15.System Functions

387

; *** NumDays example
; *** Filename - NumDays.bb2

; *** Return date
A=SystemDate
NPrint A
; *** Format date
B$=Date$(A)
NPrint B$
; *** Return day count
C=NumDays(B$)
NPrint C
MouseWait
End

DATEFORMAT

Mode(s): Amiga
Statement: format string representation
Syntax: DateFormat FORMAT#

The DATEFORMAT statement is used to configure the way both DAY$ and NUMDAYS output. The
FORMAT# parameter can be either (0) or (1):

Table 15.2 : Date format

FORMAT# Output Example
===============================
0 dd/mm/yyyy 28/03/1978
1 mm/dd/yyyy 03/28/1978

Here is an example:

; *** DateFormat example
; *** Filename - DateFormat.bb2

A=SystemDate
B$=Date$(A)
; *** dd/mm/yyyy format (e.g. 25/12/1994)
DateFormat 0
NPrint B$
; *** mm/dd/yyyy format (e.g. 01/31/2001)
DateFormat 1
NPrint B$

15.System Functions

388

MouseWait
End

The following functions return the hours, minutes, seconds, days, months and years when SYSTEMDATE
was last called respectively.

HOURS

Mode(s): Amiga
Function: return hours relevant to SystemDate
Syntax: h=Hours

Example:

; *** Hours example
; *** Filename - Hours.bb2

NPrint Date$(SystemDate)
NPrint Hours
MouseWait
End

MINS

Mode(s): Amiga
Function: return minutes relevant to SystemDate
Syntax: m=Mins

Example:

; *** Mins example
; *** Filename - Mins.bb2

NPrint Date$(SystemDate)
NPrint Mins," minutes"
MouseWait
End

15.System Functions

389

SECS

Mode(s): Amiga
Function: return seconds relevant to SystemDate
Syntax: s=Secs

Example:

; *** Secs example
; *** Filename - Secs.bb2

NPrint Date$(SystemDate)
For A=1 To 10
 A$=Date$(SystemDate)
 NPrint Secs," seconds"
 VWait 50
Next A
End

DAYS

Mode(s): Amiga
Function: return day relevant to SystemDate
Syntax: d=Days

Example:

; *** Days example
; *** Filename - Days.bb2

NPrint Date$(SystemDate)
NPrint Days
MouseWait
End

MONTHS

Mode(s): Amiga
Function: return months relevant to SystemDate
Syntax: m=Months

15.System Functions

390

Example:

; *** Months example
; *** Filename - Months.bb2

NPrint Date$(SystemDate)
NPrint Months
MouseWait
End

YEARS

Mode(s): Amiga
Function: return years relevant to SystemDate
Syntax: y=Years

Example:

; *** Years example
; *** Filename - Years.bb2

NPrint Date$(SystemDate)
NPrint Years
MouseWait
End

WEEKDAY

Mode(s): Amiga
Function: return weekday relevant to SystemDate
Syntax: w=WeekDay

The WEEKDAY function returns the weekday relevant to the last call to SYSTEMDATE.

Table 15.3 : Values returned by WEEKDAY

Value Weekday
================
0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday

15.System Functions

391

5 Friday
6 Saturday

Try the following example:

; *** WeekDay example
; *** Filename - WeekDay.bb2

NPrint Date$(SystemDate)
NPrint WeekDay
MouseWait
End

Here is a full example which demonstrates the above statements and functions:

; *** Got the time?
; *** Filename - SystemDate.bb2

; *** Arrays to hold day and month strings
Dim D$(6),M$(12)
; *** Read day and month data into arrays
Restore DAYNAMES
For A=0 To 6
 Read D$(A)
Next A
Restore MONTHNAMES
For B=1 To 12
 Read M$(B)
Next B
; *** Output system date and time
NPrint Date$(SystemDate)
NPrint D$(WeekDay)," ",Days," ",M$(Months)," ",Years
NPrint Hours,":",Mins,":",Secs
MouseWait
End

; *** Day data
DAY:
Data$ SUNDAY,MONDAY,TUESDAY,WEDNESDAY
Data$ THURSDAY,FRIDAY,SATURDAY

; *** Month data
MONTH:
Data$ JAN,FEB,MAR,APR,MAY,JUN,JUL
Data$ AUG,SEP,OCT,NOV,DEC

15.System Functions

392

15.4 Workbench functions
The following two functions return the width and height of the current Workbench screen, in pixels,
respectively.

WBWIDTH

Mode(s): Amiga
Function: return the width of Workbench screen
Syntax: w=WBWidth

Example:

; *** WBWidth example
; *** Filename - WBWidth.bb2

X=WBWidth
NPrint "Workbench is:"
NPrint ""
NPrint X," pixels wide"
MouseWait
End

WBHEIGHT

Mode(s): Amiga
Function: return the height of Workbench screen
Syntax: h=WBHeight

For example:

; *** WBHeight example
; *** Filename - WBHeight.bb2

Y=WBHeight
NPrint "Workbench is:"
NPrint ""
NPrint Y," pixels high"
MouseWait
End

15.System Functions

393

WBDEPTH

Mode(s): Amiga
Function: return the depth of Workbench screen
Syntax: d=WBDepth

WBDEPTH returns the depth of the current Workbench screen, in bitplanes. Here is an example:

; *** WBDepth
; *** Filename - WBDepth.bb2

D=WBDepth
NPrint "Workbench is:"
NPrint ""
NPrint D," bitplanes"
NPrint 2^D," colours"
MouseWait
End

WBVIEWMODE

Mode(s): Amiga
Function: return the viewmode of Workbench screen
Syntax: v=WBViewMode

This statement returns the viewmode of the current Workbench screen. The different values of
WBViewMode are as follows:

Table 15.4 : Values returned by WBVIEWMODE

Value Description
=========================
32768 ($8000) Hires
4 ($0004) Interlace
0 ($0000) Lowres

For example:

; *** WBViewMode example
; *** Filename - WBViewMode.bb2

NPrint Abs(WBViewMode)

15.System Functions

394

MouseWait
End

15.5 Food processor
The Central Processing Unit, or CPU, lies at the heart of the Amiga. All Amigas are powered by a
Motorola chip, from the 68000 (Amiga 500), to the 68040 (Amiga 4000). You may find it useful, at times,
to find out the processor of the "host" computer. This is primarily of use when designing maths-
intensive software which can take advantage of a faster processor.

PROCESSOR

Mode(s): Amiga
Function: return the system processor number
Syntax: p=Processor

This handly little function returns a value which indicates the system processor number (the chip inside
the Amiga that your program is running on).

Table 15.5 : Values returned by PROCESSOR

Value Processor
================
0 68000
1 68010
2 68020
3 68030
4 68040

For example, if zero is returned then your system processor is a 68000 microprocessor, and if four is
returned then you are lucky enough to own a 68040 processor. Here is a full example:

; *** Processor example
; *** Filename - Processor.bb2

A=Processor
Print "Your processor is a 680",A,"0"
MouseWait
End

15.System Functions

395

EXECVERSION

Mode(s): Amiga
Function: return the Exec version number
Syntax: e=ExecVersion

Similarly, EXECVERSION returns a value which indicates the Operating System number:

Table 15.6 : Values returned by EXECVERSION

Value Operating system Amiga
===
33 1.2 A1000/A2000
34 1.3 A500/A2000/A3000
36 2.0 A500P/A600
39 3.0 A1200/A4000

Try the following example:

; *** ExecVersion example
; *** Filename - ExecVersion.bb2

A=ExecVersion
Print "Your EXEC version is ",A
MouseWait
End

15.6 BREXX
BREXX describes a set of Blitz Basic commands which can be used to simulate user input, such as mouse
movements and keyboard input.

The BREXX system also allows you to create tape objects. Tape objects are predefined sequences of
events which can be played back at any time, independently of the main program. Each tape object can
store the movement of the mouse pointer, the status of the mouse buttons, or keyboard input. None of
the BREXX commands are available in Blitz mode.

15.6.1 Emulating user input
The following commands can be used to move the mouse pointer, alter the status of the mouse
buttons and emulate keyboard input, without the user having touched the keyboard or mouse.

15.System Functions

396

ABSMOUSE

Mode(s): Amiga
Statement: move mouse pointer
Syntax: AbsMouse X,Y

The ABSMOUSE statement is used to position the mouse pointer at an absolute display location. The X
and Y parameters specify the new co-ordinates of the pointer. X must be in the range zero to 639 and Y
must be in the range zero to 399 (NTSC) or zero to 511 (PAL). Here's an example:

; *** AbsMouse example
; *** Filename - AbsMouse.bb2

; *** Position mouse at top-left of screen
AbsMouse 0,0
VWait 30
; *** Position mouse in middle of screen
AbsMouse 319,199
VWait 30
; *** Position mouse at bottom-right of screen
AbsMouse 630,390
MouseWait
End

RELMOUSE

Mode(s): Amiga
Statement: move mouse pointer
Syntax: RelMouse XOFFSET,YOFFSET

RELMOUSE is similar to ABSMOUSE, except is moves the mouse pointer a relative distance from its
current position. If the XOFFSET parameter is positive then the pointer will be moved rightwards, and if
it is negative then the pointer will be moved leftwards. If YOFFSET is positive then the pointer is moved
downwards, and if it is negative then the pointer is moved upwards. For example:

; *** RelMouse example
; *** Filename - RelMouse.bb2

; *** Position mouse near middle of display
AbsMouse 300,100
; *** Move mouse rightwards
For X=1 To 40
 RelMouse 6,0
Next X

15.System Functions

397

; *** Wait for a mouse click
MouseWait
End

MOUSEBUTTON

Mode(s): Amiga
Statement: alter status of mouse button
Syntax: MouseButton BUTTON,On/Off

This statement is used to alter the status of either mouse button. The BUTTON parameter should be set
to (0) for the left mouse button and (1) for the right mouse button. If a button is set to "On" then it is
pressed, and if it is set "Off" then it is released. Example:

; *** MouseButton example
; *** Filename - MouseButton.bb2

For A=1 To 10
 VWait 2
 ; *** Toggle right mouse button on
 MouseButton 1,On
 VWait 2
 ; *** Toggle right mouse button off
 MouseButton 1,Off
Next A
End

CLICKBUTTON

Mode(s): Amiga
Statement: alter status of mouse button
Syntax: ClickButton BUTTON

CLICKBUTTON works similarly to MOUSEBUTTON, except it presses and releases the specified mouse
button. The BUTTON parameter should be set to (0) for the left mouse button and (1) for the right
mouse button. Try this example:

; *** ClickButton example
; *** Filename - ClickButton.bb2

; *** Open a standard text gadget
TextGadget 0,32,32,0,1," Magic gadget "
; *** Open screen and window for gadget
Screen 0,3

15.System Functions

398

Window 0,0,0,320,200,$100f,"Window",1,2,0
; *** Position mouse pointer at top of display
AbsMouse 0,70
; *** Move mouse pointer to gadget
For A=1 To 30
 RelMouse 4,0
Next A
; *** Highlight gadget
ClickButton 0 MouseWait End

TYPE

Mode(s): Amiga
Statement: output a text string character by character
Syntax: Type TEXT$

The TYPE statement outputs a text string to the screen, character by character. This generates a
"typewriter-style" effect. For example:

; *** Type example
; *** Filename - Type.bb2

NPrint "Input your name:-"
; *** Input some text
NAME$=Edit$(20)
; *** Type text string, character by character
Type "Your name is "+NAME$
MouseWait
End

15.6.2 Recording tape objects
RECORD

Mode(s): Amiga
Statement: record a tape object
Syntax: Record [TAPE#]

This statement allows you to record a tape object. Tabe objects are sequences of mouse movements
and/or keyboard events which may be played back at any time.

To record a tape with RECORD, the optional TAPE# parameter must be included:

15.System Functions

399

Record 0 ; *** Record tape 0

To finish recording, the RECORD statement with no parameters should be used instead:

Record ; *** Stop recording

Here is an example:

; *** Record example
; *** Filename - Record.bb2

NPrint "Move the mouse then press the right button"
; *** Position mouse pointer at top-left of display
AbsMouse 0,0
; *** Start recording mouse movements
Record 0
; *** Record until right mouse button pressed
While Joyb(0)<>2
Wend
; *** Stop recording
Record
; *** Position mouse at top-left again
AbsMouse 0,0
; *** Play tape
PlayBack 0
MouseWait
End

15.6.3 Playing tape objects
PLAYBACK

Mode(s): Amiga
Statement: play a tape object
Syntax: PlayBack [TAPE#]

The PLAYBACK statement plays a previously initialised tape object. To play a tape the optional TAPE#
parameter must be included:

PlayBack 0 ; *** Play tape 0

15.System Functions

400

To finish playing, the PLAYBACK statement with no parameters should be used instead:

PlayBack ; *** Stop tape

Try the following example:

; *** PlayBack example
; *** Filename - PlayBack.bb2

NPrint "Move the mouse then press the right button"
; *** Position mouse at top-left
AbsMouse 0,0
; *** Start recording mouse movements
Record 0
While Joyb(0)<>2
Wend
; *** Stop recording
Record
; *** Position mouse at top-left again
AbsMouse 0,0
; *** Play tape
PlayBack 0
MouseWait
End

QUICKPLAY

Mode(s): Amiga
Statement: toggle PlayBack execution mode
Syntax: QuickPlay On/Off

QUICKPLAY is used to alter the way in which tape objects are played by the PLAYBACK statement. If
QUICKPLAY is set to (On) then tapes will be played with no delays between actions (any pauses will be
ignored). If QUICKPLAY is set to (Off) then the pauses will be included - this is the default mode. For
example:

; *** QuickPlay example
; *** Filename - QuickPlay.bb2

NPrint "Move the mouse then press the right button"
AbsMouse 0,0
; *** Start recording mouse movements
Record 0
While Joyb(0)<>2
Wend

15.System Functions

401

; *** Stop recording
Record
AbsMouse 0,0
; *** Toggle QuickPlay on (no delays)
QuickPlay On
; *** Play tape
PlayBack 0
MouseWait
End

PLAYWAIT

Mode(s): Amiga
Statement: pause program execution
Syntax: PlayWait(TAPE#)

PLAYWAIT pauses program execution until the PLAYBACK statement has finished playing a tape. The
TAPE# parameter should be set to the current tape object. Example:

; *** PlayWait example
; *** Filename - PlayWait.bb2

AbsMouse 0,0
; *** Record mouse movements
Record 0
While Joyb(0)<>2
Wend
; *** Stop recording
Record
AbsMouse 0,0
NPrint "Program execution stopped"
PlayBack 0
; *** Halt program execution
PlayWait(0)
NPrint "Program execution started"
MouseWait
End

15.6.4 BREXX functions
XSTATUS

Mode(s): Amiga
Function: return status of BREXX system
Syntax: x=XStatus

15.System Functions

402

This function returns the status of the BREXX system.

Table 15.7 : XStatus return values

Value Description
==================================
0 BREXX is currently inactive
1 BREXX is recording a tape
2 BREXX is playing a tape

Here's an example:

; *** XStatus example
; *** Filename - XStatus.bb2

; *** Open a screen and grab its BitMap
Screen 0,11
ScreensBitMap 0,0
BitMapOutput 0
Locate 0,3
NPrint "Move the mouse then press the right button"
AbsMouse 0,0
Record 0
VWait 20
Locate 0,6
; *** BREXX is recording
NPrint XStatus," - recording !!!!"
While Joyb(0)=0
Wend
Record
Locate 0,6
; *** BREXX is inactive
NPrint XStatus," - inactive !!!! "
VWait 100
AbsMouse 0,0
PlayBack 0
VWait 20
Locate 0,6
; *** BREXX is playing
NPrint XStatus," - playing !!!! "
MouseWait
End

15.System Functions

403

15.6.5 Loading and saving tape objects
LOADTAPE

Mode(s): Amiga
Statement: load a tape object
Syntax: LoadTape TAPE#,"FILENAME"

This statement is used to load a tape object into memory. For example:

; *** LoadTape example
; *** Filename - LoadTape.bb2

NPrint "Move the mouse then press the right button"
AbsMouse 0,0
; *** Create a tape object and save to RAM:
Record 0
While Joyb(0)<>2
Wend
Record
SaveTape 0,"RAM:TAPE"
VWait 20
; *** Load tape from RAM:
LoadTape 0,"RAM:TAPE"
AbsMouse 0,0
; *** Play tape
PlayBack 0
MouseWait
End

SAVETAPE

Mode(s): Amiga
Statement: save a tape object
Syntax: SaveTape TAPE#,"FILENAME"

This statement saves a tape object to disk. For example:

; *** SaveTape example
; *** Filename - SaveTape.bb2

NPrint "Move the mouse then press the right button"
; *** Create a tape object
AbsMouse 0,0
Record 0

15.System Functions

404

While Joyb(0)<>2
Wend
Record
; *** Save tape to RAM:
SaveTape 0,"RAM:TAPE"
End

15.6.6 Recording BREXX commands
The following commands are also used to record tape objects. However, TAPETRAP and QUIETTRAP are
used to record sequences of BREXX commands, and not mouse movements or keyboard events.

TAPETRAP

Mode(s): Amiga
Statement: record a sequence of BREXX commands
Syntax: TapeTrap [TAPE#]

TAPETRAP is used to record a sequence of BREXX commands (ABSMOUSE, RELMOUSE, MOUSEBUTTON
or CLICKBUTTON). To record a tape the optional TAPE# parameter must be included:

TapeTrap 0 ; *** Record tape 0

To finish recording, the TAPETRAP statement with no parameters should be used instead:

TapeTrap ; *** Stop tape

Try this example:

; *** TapeTrap example
; *** Filename - TapeTrap.bb2

AbsMouse 0,150
TapeTrap 0
RelMouse 380,0
TapeTrap
MouseWait
AbsMouse 0,150
PlayBack 0
VWait 30
End

15.System Functions

405

QUIETTRAP

Mode(s): Amiga
Statement: toggle TapeTrap execution mode
Syntax: QuietTrap On/Off

This statement toggles the TAPETRAP execution mode. If QUIETTRAP is set to (On) then the BREXX
commands recorded with TAPETRAP will not be displayed until they are played back. If QUIETTRAP is
set to (Off) then the BREXX commands will be displayed as they are recorded. Here's an example:

; *** QuietTrap example
; *** Filename - QuietTrap.bb2

AbsMouse 0,150
; *** Display mouse movement
; *** when creating tape
QuietTrap Off
TapeTrap 0
RelMouse 380,0
TapeTrap
MouseWait
; *** Don't display mouse movement
; *** when creating tape
QuietTrap Off
AbsMouse 0,150
TapeTrap 0
RelMouse 0,200
TapeTrap
PlayBack 0
VWait 30
End

15.6.7 Macro keys
MACROKEY

Mode(s): Amiga
Statement: define a macro key
Syntax: MacroKey TAPE#,RAW_CODE,QUALIFIER

MACROKEY attaches a tape object to the keyboard, so that one key can be used to start the tape
playing. The RAW_CODE and QUALIFER parameters are used to specify the macro key. Here are some
examples:

15.System Functions

406

; *** MacroKey example ** Filename - MacroKey.bb2

AbsMouse 0,150
TapeTrap 0
RelMouse 380,0
TapeTrap
; *** Press HELP key
MacroKey 0,95,0
MouseWait
End

; *** MacroKey example 2 ** Filename - MacroKey2.bb2

AbsMouse 150,0
TapeTrap 0
RelMouse 0,200
TapeTrap
; *** Press escape key
MacroKey 0,69,0
MouseWait
End

FREEMACROKEY

Mode(s): Amiga
Statement: remove a macro key
Syntax: FreeMacroKey RAW_CODE,QUALIFIER

This statement removes the tape object attached to the specified macro key. For example:

; *** FreeMacroKey example ** Filename - FreeMacroKey.bb2

AbsMouse 0,150
TapeTrap 0
RelMouse 380,0
TapeTrap
; *** Assign macro to HELP key
MacroKey 0,95,0
; *** Remove macro key
FreeMacroKey 95,0
MouseWait
End

15.System Functions

407

15.7 End-of-Chapter summary
The NTSC and DISPHEIGHT functions should be used when designing software which can dynamically
adjust itself to different displays (NTSC or PAL). DISPHEIGHT returns a value of 256 if it is executed in
PAL mode, or 200 if executed on an NTSC Amiga.

Objects can be Blitz Basic screens, Slices, BitMaps, shapes etc. The USE, FREE, USED, ADDR and
MAXIMUM commands are used to find out information about these objects.

WBHEIGHT, WBWIDTH, WBDEPTH and WBVIEWMODE are used to find out information about the
Workbench screen.

Tape objects are predefined sequences of events which can be played back at any time, independently
of the main program.

15.System Functions

408

Chapter 16 : Advanced programming
The chapter contains information on conditional compilation techniques. It also covers the commands
related to Blitz Basic's in-line assembler.

16.1 Compiler directives
The following section covers the commands which affect how a program is compiled by Blitz Basic.

16.1.1 Include files
These are files of predefined data which may be "included" in a source code file using a special
directive. When the program is compiled these additional files are compiled as part of the main source
code.

INCLUDE

Directive: compile a file as part of the current program
Syntax: INCLUDE "FILENAME"

The INCLUDE directive is used to compile an external file as part of the current Blitz Basic program. The
file must be a tokenised Blitz 2 program. For example:

; *** INCLUDE example
; *** Filename - INCLUDE.bb2

; *** Create the following program
; *** and save it to df0: as "BITMAP.bb2"

;BLITZ
;BitMap 0,320,256,3
;Slice 0,44,3
;Show 0

; *** Then enter the following listing
INCDIR "df0:"
INCLUDE "BITMAP.bb2"
For A=1 To 300
 Plot Rnd(320),Rnd(DispHeight),Rnd(5)+1
Next A
MouseWait
End

409

XINCLUDE

Mode(s): N/A
Directive: compile a file as part of the current program
Syntax: XINCLUDE "FILENAME"

The XINCLUDE (exclusive include) directive works identically to INCLUDE, however XINCLUDE files are
only included once, regardless of the number of times the same filename is used. Here's an example:

; *** XINCLUDE example
; *** Filename - XINCLUDE.bb2

; *** Create the following program
; *** and save it to df0: as "SCREEN.bb2"
;Screen 0,3
;ScreensBitMap 0,0
;Cls 0

; *** Then enter the following listing
INCDIR "df0:"
XINCLUDE "SCREEN.bb2"
For B=1 To 300
 Circlef Rnd(320),Rnd(DispHeight),Rnd(20)+10,Rnd(5)+1
Next B
MouseWait
End

INCBIN

Mode(s): N/A
Directive: compile a binary file as part of the current program
Syntax: INCBIN "FILENAME"

The INCBIN directive is used to include a binary file as part of the current Blitz Basic program. For
example:

; *** INCBIN example
; *** Filename - INCBIN.bb2

INCDIR "df0:"
INCBIN "Binary file"
MouseWait
End

16.Advanced Programming16.Advanced Programming

410

INCDIR

Mode(s): N/A
Directive: specify file path for INCLUDE directives
Syntax: INCDIR PATH

INCDIR is used to specify the correct filename path for the INCLUDE, XINCLUDE and INCBIN directives.
Example:

; *** INCDIR example
; *** Filename - INCDIR.bb2

INCDIR "RAM:"
INCLUDE "A FILE.bb2"
MouseWait
End

RUNERRSOFF

Mode(s): N/A
Directive: disable error checking
Syntax: Runerrsoff

The RUNERRSOFF directive can be used to disable error checking in different parts of your programs. It
overrides the COMPILER OPTIONS settings. This allows you to make mistakes, without the Blitz Basic
editor reporting them:

; *** Runerrsoff example
; *** Filename - Runerrsoff.bb2

Runerrsoff
; *** Should generate error
Blit 0,100,100
MouseWait
End

RUNERRSON

Mode(s): N/A
Directive: enable error checking
Syntax: Runerrson

16.Advanced Programming16.Advanced Programming

411

The RUNERRSON directive enables error checking. It also overrides the COMPILER OPTIONS settings.

; *** Runerrson example
; *** Filename - Runerrson.bb2

Runerrsoff
; *** Should generate error
Blit 0,100,100
Runerrson
; *** Does generate error
Blit 0,100,100
MouseWait
End

16.1.2 Conditional compiling
Conditional compiling alows you to select which parts of a program are compiled by Blitz Basic. It can
be used to produce "crippled" demonstration software (e.g. a utility with the save function disabled).

CNIF

Mode(s): N/A
Directive: define start of conditional compiling
Syntax: CNIF CONSTANT1 COMPARISON CONSTANT2

CEND

Mode(s): N/A
Directive: end conditional compiling definition
Syntax: CEND

The CNIF directive is used to set the start of a conditional compiling definition. It allows you to
conditionally compile a section of code based on a comparison of two constants. The COMPARISON
parameter should be one of the following Blitz Basic operators:

16.Advanced Programming16.Advanced Programming

412

Table 16.1 : Conditional compiling operators

Operator Description Example
===
< Less than CNIF A Greater than CNIF A>B
= Equal CNIF A=B
<> Unequal CNIF A<>B
<= Less than or equal to CNIF A<=B
>= Greater than or equal to CNIF A>=B

If the comparison is true then the code will be compiled, but if it is false then the program code will not
be compiled until a CEND directive is executed.

CEND terminates a conditional compiling definition. Try the following example:

; *** CNIF example
; *** Filename - CNIF.bb2

#DISABLED=0
BLITZ
BitMap 0,320,256,3
BitMapOutput 0
Slice 0,44,3
Show 0
CNIF #DISABLED=1
 For B=1 To 50
 Locate Rnd(30),Rnd(20)
 Colour Rnd(5)+1
 NPrint "Blitz Basic"
 Next B
 MouseWait
CEND
End

In the above example the whole program is not compiled, as the #DISABLED constant is set to (0).
However, if the #DISABLED constant is set to (1) then the whole program will be compiled.

CSIF

Mode(s): N/A
Directive: compile based on string comparison
Syntax: CSIF "STRING" COMPARISON "STRING"

The CSIF directive is used to set the start of a conditional compiling definition. It allows you to
conditionally compile a section of code based on a comparison of two text strings. The COMPARISON

16.Advanced Programming16.Advanced Programming

413

parameter should be one of the previous Blitz Basic operators.

If the comparison is true then the code will be compiled, but if it is false then the program code will not
be compiled until a CEND directive is executed.

CEND must be used to terminate the definition. Here is an example:

; *** CSIF example
; *** Filename - CSIF.bb2

BLITZ
BitMap 0,320,256,3
BitMapOutput 0
Slice 0,44,3
Show 0
CSIF "String"="String"
 NPrint "Compiled!"
CELSE
 NPrint "Not compiled!"
CEND
MouseWait
End

CELSE

Mode(s): N/A
Directive: compile when a comparison is false
Syntax: CELSE

The CELSE directive is used in conjunction with CNIF and CEND, or CSIF and CEND, to qualify a
condition. The commands between CNIF or CSIF and CELSE are compiled when the logical condition
following CNIF or CSIF is true.

If the condition following CNIF or CSIF is false then the commands after CELSE are compiled instead.
Here's an example:

; *** CELSE example
; *** Filename - CELSE.bb2

#DISABLED=0
BLITZ
BitMap 0,320,256,3
BitMapOutput 0
Slice 0,44,3
Show 0
CNIF #DISABLED=1
 For B=1 To 20
 VWait 5

16.Advanced Programming16.Advanced Programming

414

 Cls Rnd(7)
 Next B
CELSE
 NPrint "Colour flash not compiled!"
 MouseWait
CEND
End

CERR

Mode(s): N/A
Directive: generate compile-time error message
Syntax: CERR MESSAGE

The CERR directive is used to generate compile-time error messages. CERR is normally used in
conjunction with macros and conditional compiling to generate errors when incorrect macro
paramaters are passed. For example:

; *** CERR example
; *** Filename - CERR.bb2

Macro ERROR
 ; *** One parameter passed to macro?
 CNIF `0=1
 CERR "Correct number of parameters"
 CELSE
 ; *** Wrong number of parameters
 CERR "Illegal number of macro parameters"
 CEND
End Macro

!ERROR{A}
MouseWait
End

16.1.3 Macros
A macro is simply a list of commands which is called up by typing the macro name (preceded by an
exclamation mark). Once a macro has been defined it can be used anywhere in the program, and will
have exactly the same effect as if the assigned comamnds had been entered from the keyboard.

16.Advanced Programming16.Advanced Programming

415

MACRO

Mode(s): N/A
Directive: declare start of macro definition
Syntax: Macro NAME

END MACRO

Mode(s): N/A
Directive: end a macro definition
Syntax: End Macro

The MACRO directive is used to declare the start of a macro definition. All commands following this
directive are included in the macro's contents. END MACRO terminates a macro definition. Here are
some examples:

; *** Macro example
; *** Filename - Macro.bb2

Macro AMACRO
 NPrint "This is a macro"
 NPrint "definition"
End Macro

; *** Call macro 10 times
For A=1 To 10
 !AMACRO
Next A
MouseWait
End

; *** Macro example 2
; *** Filename - Macro2.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0

Macro ANOTHERMACRO
 For A=1 To 200
 Plot Rnd(320),Rnd(256),Rnd(5)+1
 Next A
End Macro

16.Advanced Programming16.Advanced Programming

416

; *** Call macro 10 times
For B=1 To 10
 Cls 0
 !ANOTHERMACRO
 VWait 25
Next B
End

16.2 Assembler
Assembly language can be included either in-line, using GETREG and PUTREG to access variables, or
inside procedures. This allows the experienced Amiga programmer to speed up processor-intensive
BASIC with faster machine code.

Blitz Basic's in-line assembler is very easy to use (if you are an experienced 68000 programmer!). All
68000 mnemonics are tokenised as if they were BASIC reserved keywords, and are assembled into
machine code when your program is compiled. However, the in-line assembler does have a couple of
limitations: the Absolute Short addressing mode and Short Branches are not supported, and assembler
expressions must use curly brackets ({}) to force operator precedence.

The in-line assembler can be treated as an assembler instead of a compiler, although why you'd want to
do this is not certain (surely Devpac 3.0, with its superior debugging tools is a much more stable
assembler!?).

However, in order to correclty mix assembler with BASIC then the following rule must be obeyed:

Address registers A4-A6 must be preserved and restored by any assembly language routines. Blitz 2
uses A5 as a global variable base, A4 as a local variable base, and tries to keep A6 from having to be re-
loaded too often.

DC

Mode(s): Amiga/Blitz
Statement: define constant
Syntax: Dc[.SIZE] DATA[,DATA...]

DC stands for Define Constant, and is used to define areas of data for assembly language programs.

DCB

Mode(s): Amiga/Blitz
Statement: define constant block
Syntax: Dcb[.SIZE] REPEATS,DATA

DCB stands for Define Constant Block. It is used to insert a repeating series of the same value into
assembly language programs.

16.Advanced Programming16.Advanced Programming

417

DS

Mode(s): Amiga/Blitz
Statement: define storage
Syntax: Ds[.SIZE] LENGTH

DS stands for Define Storage. It is used to insert a gap into a program, which may be used as a data
storage area.

EVEN

Mode(s): Amiga/Blitz
Statement: word align internal program counter
Syntax: Even

EVEN is used to word align the Blitz Basic internal program counter. This may be necessary if a DC, DCB
or DS statement has left the program counter at an odd address.

GETREG

Mode(s): Amiga/Blitz
Statement: transfer result to register
Syntax: GetReg 68000 REG,EXPRESSION

GETREG is used to transfer the result of a BASIC expression to a 68000 register. The result of the
expression is converted into a long value before being moved to the data register.

GETREG should only be used to transfer expressions to one of the eight data registers (d0-d7). GETREG
uses the stack to temporarily store any registers used in the calculation of the expression. See PUTREG
examples.

PUTREG

Mode(s): Amiga/Blitz
Statement: transfer register to variable
Syntax: PutReg 68000 REG,VARIABLE

The PUTREG statement is used to transfer a value from any 68000 register (d0-d7/a0-a7) into a variable.
If the specified variable is a string, long, float or quick, then all four bytes from the register will be
transferred. If the specified variable is a word or a byte, then only the relevant low bytes will be
transferred. Here are some examples:

16.Advanced Programming16.Advanced Programming

418

; *** GetReg/PutReg example
; *** Filename - PutReg.bb2

A.w=100
; *** Put variable into register
GetReg d0,A
; *** Negate number
NEG d0
; *** Grab contents of register
PutReg d0,B.w
NPrint B
MouseWait
End

; *** GetReg/PutReg example 2
; *** Filename - PutReg2.bb2

A.w=100
B.w=5
; *** Put variables into registers
GetReg d0,A
GetReg d1,B
; *** Add register 0 to register 1
ADD d0,d1
; *** Grab contents of register 1
PutReg d1,C.w
NPrint C
MouseWait
End

SYSJSR

Mode(s): Amiga/Blitz
Statement: call system routine
Syntax: SysJsr ROUTINE

SYSJSR is used to call Blitz Basic's system routines. The ROUTINE parameter specifies the routine
number to call.

16.Advanced Programming16.Advanced Programming

419

TOKEJSR

Mode(s): Amiga/Blitz
Statement: call library based routine
Syntax: TokeJsr TOKEN[,FORM]

TOKEJSR is used to call Blitz Basic's library-based routines. The TOKEN parameter specifies a token
number, or token name. FORM is a particular form of the token.

ALIBJSR

Mode(s): Amiga/Blitz
Statement: call routine from one library to another
Syntax: ALibJsr TOKEN[,FORM]

ALIBJSR is used to call a routine from one library to another. Please refer to the library writing section of
the programmers guide for more information on library writing.

BLIBJSR

Mode(s): Amiga/Blitz
Statement: call routine from one library to another
Syntax: BLibJsr TOKEN[,FORM]

BLIBJSR is used to call a routine from one library to another. Please refer to the library writing section of
the programmers guide for more information on library writing.

16.3 End-of-Chapter summary
Includes are files of predefined data which may be "included" in a source code file using a special
directive. When the program is compiled these additional files are compiled as part of the main source
code.

Conditional compiling alows you to select which parts of a program are compiled by Blitz Basic. It can
be used to produce "crippled" demonstration software (e.g. a utility with the save function disabled).

A macro is simply a list of commands, which is called up by typing the macro name. Once a macro has
been defined it can be used anywhere in the program, and will have exactly the same effect as if the
assigned comamnds had been entered from the keyboard.

Blitz Basic incorporates a full in-line Assembler. Address registers A4-A6 must be preserved and
restored by any assembly language routines. Note that the Absolute Short addressing mode and Short
Branches are not supported, and assembler expressions must use curly brackets ({}) to force operator
precedence.

16.Advanced Programming16.Advanced Programming

420

Chapter 17 : Program startup
This chapter covers all of the commands involved in program startup. It will teach you all you need to
know about executable files, parameter passing and Blitz Basic runtime.

17.1 Executable files
Executable files are those which can be run independently from the Blitz Basic 2 environment.

Creating an executable file is easy. First, load the program you wish to create an executable file for into
the Blitz Basic editor. If you want Blitz to create an icon for your program then make sure that the
"Create Icons for Executable Files" option in the COMPILER OPTIONS is set to on (i.e. highlighted). Then
select "CREATE EXECUTABLE" from the COMPILER menu, or press Amiga & E. Type in the filename of the
program you wish to create and press the return key. Blitz Basic will then create your executable file.

In order for any Blitz Basic program to run from outside of the Blitz Basic 2 system, the following
statement MUST be placed at the very beginning of your program code. If it is not included then your
program will not run from Workbench, it's as simple as that.

WBSTARTUP

Mode(s): Amiga/Blitz
Statement: allow program to run from Workbench
Syntax: WBStartup

If you want your Blitz Basic creation to run from Workbench then you MUST include this statement in
the program, otherwise, the program will crash. You have been warned! Here are some examples:

; *** WBStartup example
; *** Filename - WBStartup.bb2

WBStartup
Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0
Locate 0,3
NPrint "I will start from Workbench"
MouseWait
End

; *** WBStartup example 2
; *** Filename - WBStartup2.bb2

; *** No WBSTARTUP statement!!!
BLITZ

421

BitMap 0,320,256,3
BitMapOutput 0
Slice 0,44,3
Show 0
Locate 0,3
NPrint "I won't start from Workbench"
MouseWait
End

CLOSEWORKBENCH_

Mode(s): Amiga/Blitz
Statement: close Workbench
Syntax: CloseWorkBench_

This statement closes the Workbench screen, freeing about 40K of valuable memory for your own
programs. Example:

; *** CloseWorkBench_ example
; *** Filename - CloseWorkBench_.bb2

CloseWorkBench_
MouseWait
End

OPENWORKBENCH_

Mode(s): Amiga/Blitz
Statement: open Workbench
Syntax: OpenWorkBench_

This statement reopens the Workbench screen. For example:

; *** OpenWorkBench_ example
; *** Filename - OpenWorkBench_.bb2

OpenWorkBench_
MouseWait
End

17.Program Startup

422

17.1.1 CLI Parameters
When a program is run from the CLI, various parameters can be passed to the program. This allows the
user to alter, or influence, various aspects of the program without getting their hands dirty in the actual
program code.

NUMPARS and PAR$ return the number of parameters and grab the contents of the CLI command line
respectively. They can be used to return strings containing all the parameters which have been entered
from the command line. If parameters have not been defined, you'll get (0) from NUMPARS, or a null
string ("") from PAR$ instead.

For example, if you wanted to run an executable file from the CLI and tell it to open a high-resolution
screen, then you would call the program something like this:

Program HIGHRES

The following code could be used to read this parameter and set the screen mode accordingly:

; *** Passing parameters
; *** Filename - Pass.bb2

If Par$(1)="HIGHRES"
 Screen 0,11,"High-res"
Else
 Screen 0,3,"Low-res"
EndIf
MouseWait
End

Another interesting use of parameter passing is illustrated in the following example. If you wanted to
tailor software to the user, without having to prompt them for questions about name, age etc., then you
could get them to call your program with the parameters as their details:

Program NEIL,WRIGHT,197

Your program could then display this information upon loading:

; *** Parameter passing 2
; *** Filename - Pass2.bb2

BLITZ
BitMap 0,320,256,3
BitMapOutput 0
Slice 0,44,3
Show 0

17.Program Startup

423

If NumPars=3
 Colour 1
 ; *** First parameter
 NPrint "First Name: ",Par$(1)
 Colour 2
 ; *** Second parameter
 NPrint "Surname: ",Par$(2)
 Colour 3
 ; *** Third parameter
 NPrint "Age: ",Par$(3)
End If
MouseWait
End

The "CLI Arguement" menu option can be used to test CLI parameters. Here, parameters can be entered
and tested on non-executable programs prior to the creation of executable files. These parameters may
be read by the NUMPARS and PAR$ functions.

NUMPARS

Mode(s): Amiga/Blitz
Function: return number of parameters passed to program
Syntax: p=NumPars

The NUMPARS function returns the number of parameters passed to an executable program from
either the Workbench or the CLI. If no parameters are supplied then NUMPARS will return (0).

For example, if a Blitz Basic program is called in the following way, through the CLI, then (2) is returned
because two parameters are passed:

Program PARAMETER1 PARAMETER2

Programs run from Workbench, however, are only capable of picking up one parameter. This is
achieved through the file's "Default tool" (contained in the .Info file), or by multiple selection through
the shift key. Here's an example:

; *** NumPars example
; *** Filename - NumPars.bb2

NPrint NumPars," parameters passed"
MouseWait
End

17.Program Startup

424

PAR$

Mode(s): Amiga/Blitz
Function: return string equivalent to a passed parameter
Syntax: p$=Par$(PARAMETER)

The PAR$ function returns a string equivalent to a parameter passed to an executable file through
either the CLI or Workbench. If no parameters have been defined, a null string ("") is returned.

Example:

BLASTER one two three

Runs a program called "BLASTER", with parameters "one", "two" and "three". These parameters can be
returned by the following code:

; *** Par$ example
; *** Filename - Par$.bb2

For A=1 To NumPars
 NPrint Par$(A)
Next A
MouseWait
End

17.2 Runtime program startup
The following commands have no effect on programs run outside of the Blitz Basic 2 environment (i.e.
programs that have been converted to executable files). They are primarily of use during program
development.

CLOSEED

Mode(s): Amiga/Blitz
Statement: close Blitz Basic editor
Syntax: CloseEd

This statement is used to close the Blitz Basic 2 editor screen when programs are executed from within
Blitz Basic. This frees around 40K of valuable chip memory. CLOSEED has no effect on executable files
run outside of the Blitz environment. Here's an example:

17.Program Startup

425

; *** CloseEd example
; *** Filename - CloseEd.bb2

CloseEd
NPrint "No editor!!!"
MouseWait
End

NOCLI

Mode(s): Amiga/Blitz
Statement: prevent default CLI from opening under Blitz Basic
Syntax: NoCli

NOCLI prevents the default CLI from opening when programs are executed from within Blitz Basic. This
has no effect on executable files run outside of the Blitz environment. For example:

; *** NoCli example
; *** Filename - NoCli.bb2

NoCli
Screen 0,3
ScreensBitMap 0,0
BitMapOutput 0
Locate 0,3
NPrint "No default CLI"
MouseWait
End

17.3 End-of-Chapter summary
If an executable file is to start from Workbench then the WBSTARTUP statement must be the very first
line in your program.

The NUMPARS function returns the number of parameters passed to an executable file. PAR$ returns a
string equivalent to a parameter passed to an executable file through either the CLI or Workbench.

CLOSEED can be used to close the Blitz Basic 2 editor. This frees around 40K of valuable chip memory.

Executing the NOCLI statement prevents the default CLI from opening.

17.Program Startup

426

Chapter 18: The Future
For the duration of this guide's 400 pages I have tried to help you get the most from Blitz Basic 2 by
providing a comprehensive command reference. By this stage you should have a reasonable knowledge
of the Blitz instruction set and of the techniques that can be used to create professional software in
BASIC. I hope you have enjoyed the journey!

If you want to hone your coding skills and make contact with other Blitz Basic programmers then join
one of the many user clubs. They are all run by friendly, helpful folk whose main goal in life is to make
your coding a little less painful. For really up to date information the only way to turn is to the Blitz User
Group.

18.1 The Blitz User Group
B.U.G is a new (at the time of writing) club dedicated to all aspects of Blitz Basic 2. The aims of the club
are simple: to teach people how to create commercial quality games in Blitz and make as much money
from their programs as possible. Or something.

Each issue of the bi-monthly B.U.G disk magazine contains all the latest Blitz news, reviews, tips and
previews, together with comprehensive tutorials, loads of Blitz source code and plenty of free
commercial quality graphics.

Each issue costs £3.50 and is available from:

Seasoft Computing
Unit 3
Martello Enterprise Centre
Courtwick Lane
Littlehampton
West Sussex
BN17 7PA
Tel: (01903) 850378

18.2 Blitz User International
The Blitz User International Magazine is produced by Matthew Tillett & Kevin Winspear, in the UK, to
provide support for all Blitz programmers. B.U.I is a monthly printed magazine, with coverdisk, which
covers the main aspects of Blitz programming. If you would like to join this group, or purchase their
fanzine, then write to (with S.A.E):

B.U.I
27 Hillside Avenue
Worlingham
Beccles
Suffolk
NR34 7AJ

427

18.3 Blitz User Magazine
The unfortunately named BUM magazine is the official offering from Acid Software, the producers of
Blitz Basic. Your £15 subscription fee gets you five issues full of extensions, upgrades, source code and
other goodies. All users who register with Acid Software in the United Kingdom will receive information
on the Blitz User Magazine:

Acid Software Distribution Centre
Unit 15 Guildhall Industrial Estate
Kirk Sandle
Doncaster
England
DN3 1QR
Tel: (01302) 890000

18.4 Blitz User Disk Magazine
If you want to communicate with Blitz users nationwide, here is your chance. The Blitz User Disk
Magazine is produced by Michael Milne, in the UK, to provide local support for all Blitz Basic users. It
covers the main features of Blitz Basic and has sections on programming, graphics, music and new
Amiga hardware.

The B.U.D (great acronym, guys) magazine covers the main areas of interest to Blitz users with routines
as its main feature. Users can talk about themselves, their interests, equipment and exchange
information with fellow programmers.

Readers are encouraged to submit programs for publication and Michael will try his best to answer any
programming queries. If you would like to participate in this user club you can obtain a free copy of the
first issue by sending a blank disk and SAE to the following address:

Blitz User Disk Magazine
c/o 39 The Drive
Earley
Berkshire
England
RG6 1EG

18.5 Magazine columns
As well as the various Blitz clubs and societies, there are a number of Blitz-dedicated columns in the
monthly Amiga magazines. Amiga Format and Amiga Shopper are both good sources of Blitz Basic
information. You may also be interested in CU Amiga semi-regular column which aims to teach the
fabled art of games programming, often with varying degrees of success.

18.The Future

428

18.6 Useful contacts
Acid Software headquarters, New Zealand. To contact the authors of Blitz Basic 2, write to this address:

Acid Software
10 St Kevins Arcade
Auckland 1
New Zealand
Tel: (64)-9-358 1658

Gothik PD specialise in Blitz Basic 2 programming and public domain software:

Gothik PD
7 Denmark Road
Northampton
England
NN1 5QR
Tel: (01604) 22456

For a comprehensive selection of Amiga Public Domain, including Blitz Basic games, demos and utilities,
write to the following address. For £1 you will recive a catalogue listing over 8000+ titles:-

Tornado Software
10 Colenso Street
Hartlepool
Cleveland
TS26 9BD

(Cheques & PO's Payable to K. Winspear)

18.The Future

429

Appendix A : Blitz Basic Applications
There are a clutch of useful utilities available for the Blitz Basic 2 development system. Obviously we
have Shapesmaker and MapEdit, the two utilities bundled with Blitz Basic, but we also have Shape-Ed
V2 and BobEd, two superior object editors, and Blitz-Case, a complete software engineering package.
Naturally, all of these applications were written using the Blitz Basic language.

One of the many pitfalls of the Blitz Basic 2 documentation is that it does not contain details of the
Shapesmaker and MapEdit programs. Here are those illustrious instructions!

A.1 Shapesmaker
The Amiga range of computers have access to an extremely powerful graphic shifter called the Blitter
chip. Blitter Objects, or "Bobs" for short, are images which can be displayed on screen with lightning
speed, but must be displayed and updated by the user to avoid graphic corruption. For reasons know
only to Acid Software, Blitz Basic refers to these Bobs as shapes, or shape objects. These shape objects
may be used in a variety of different ways, such as gadgets, menu items or game graphics.

The Shapesmaker utility can be found in the "tools" directory of the Blitz Basic 2 System disk. This
program was, until a short while ago, the only way of producing shape objects for your Blitz programs.

When designing your shapes in a utility such as Deluxe Paint IV, you should make sure that each row of
objects is aligned on exactly the same line across the screen, otherwise they will not be recognised by
Blitz Basic. Also, all shapes on the same row must be of the same vertical size (the horizontal size is not
important). This is crucial if you want your shapes to be recognised by the shape editor.

After the Shapesmaker program has loaded, hold down the right-hand mouse button. You should be
greeted by the following list of menu options:

PROJECT OPTIONS COLOUR

LOAD MAKE SHAPES REMOVE COLOUR?
CONVERT MAKE SPRITES
QUIT AUTO CENTRE

Shapesmaker is fully menu-driven so I will run through each of the menu options in turn and (hopefully)
give you a complete guide to shape creation.

A.1.1 Loading an IFF file
To load an IFF file into memory you select the LOAD menu option (located under the PROJECT menu)
and input the relevant filename.

The QUIT option is also located under the PROJECT menu, but you won't want to select that just yet.

A.1.2 Shapes or sprites?
The next step is to tell Shapesmaker which type of object you will be dealing with, either shapes or
sprites. If you look under the OPTIONS menu then you will see that the MAKE SHAPES option is

430

selected. So, if you want to create shape objects then you can leave this option alone, but if you want to
create some sprites then select MAKE SPRITES.

A.1.3 Detention centre
The AUTO CENTRE option is a handy little function which tells Shapesmaker to automatically centre
each object's hot spot, or handle, as they are converted. An object's handle refers to an offset, in pixels,
from the upper left of the shape to be used when calculating a shape's coordinates. Consult Chapter 8
for further information.

A.1.4 Masking tape
When designing shapes and sprites, it often helps to set aside a single colour which can be used as a
background "mask" colour. To create a mask, simply create a series of filled rectangle of size greater
than your largest shape, then paste each shape on top of a rectangle. When you convert your IFF files
to shape objects using the editor, you can automatically remove this background mask by selecting the
REMOVE COLOUR? option from the COLOUR menu.

Using a background mask allows you to overcome the vertical sizing restriction imposed by the shape
editor. Say, for example, that you had drawn an animating alien that increased in size from frame to
frame. Under normal circumstances Shapesmaker wouldn't recognise the shapes, but if a background
mask was used then all of the objects would be of the same vertical size.

A.1.5 Preaching to the converted
Having loaded your IFF file and set the object type, handle offset, and background mask, the final step
is to convert the picture to a series of shape objects. This is achieved by selecting CONVERT from the
PROJECT menu. Naturally you will be asked to input a filename and, all being well, Shapesmaker will
chop up your graphics and save them onto a disk.

Whilst Shapesmaker lacks the raw power of utilities such as BobEd and Shape-Ed V2, it more than
makes up for it in its ease of use.

A.2 MapEdit
The MapEdit program can also be found in the "tools" directory of the Blitz Basic 2 System disk.
MapEdit is a fabulous utility which enables you to create the backgrounds used in mapped games. It
allows you to create giant screens in memory using a series of simple building blocks, much like a
jigsaw or collage. You can design giant maps, the height of many screens and they will not take up
nearly as much memory as normal pictures.

The practical use of MapEdit can be seen in many different commercial games, such as Woody's World
(a cute-style platform game) and Roadkill (an overhead driving game written entirely in Blitz Basic 2!).

A.2.1 First steps
First you must create your blocks using a paint package such as Deluxe Paint IV. Blocks are simple
square or rectangular areas that can be glued together in varying arrangements and used again and
again on the same background. The actual size of the blocks is up to you, but common sizes are 16*16
pixels, 32*32 pixels, 32*16 pixels and 16*32 pixels. Bear in mind that all blocks must be of the same size
(i.e. all 16*16 pixels, or all 32*32 pixels) otherwise they will be of no use to MapEdit.

A.Blitz Basic Applications

431

The next step is to use the Shapesmaker utility to grab your screen blocks from an IFF file and convert
them to shape objects (see above for more details). Then you can use MapEdit to paste these building
blocks together, thus creating a complete game backdrop.

A.2.2 Starting from scratch
Upon loading the MapEdit utility you will be greeted by a list of parameters, much like the one below:

Map Parameters

Block Width: 16
Block Height: 16
Map Width: 20
Map Height: 12

The Block Width and Block Height parameters should be set to the same dimensions as your graphic
blocks. The Map Width and Map Height parameters are the width and height of your map respectively,
measured in screen blocks.

For example, if your blocks are 16*16 pixels in size and your map width is 20 blocks then the total width
is (16*20) = 320 pixels. Similarly, if 32*16 pixel blocks are used and the map width is set to 20 then the
total map width will be (32*20) = 640 pixels, or two screens in width!

Let's leave these values as they are for the moment, so click once on the USE gadget and we will begin
our journey. MapEdit is also fully menu-driven; here are the various menu options:

PROJECT BLOCKS GROUP

NEW LOAD SHAPES CREATE
LOAD LOAD PALETTE DELETE
SAVE
QUIT

The NEW option is primarily of use when you want to clear the map editing screen. This also erases any
maps from memory, so remember to save your work before you access this function!

The lOAD option loads a previously created map into memory. Try loading the "demomap" file from the
"mapedit.demo" directory of your Blitz Basic 2 System disk. It doesn't look very exciting, does it? That's
because we haven't loaded any screen blocks into memory. To do this, highlight the LOAD SHAPES
option and load the "blocks.shapes" file, also from the "mapedit.demo" directory. Right, that's the map
and blocks in place, but what's wrong with the screen colours? You've guessed it, we need to load the
shapes' palette as well. To do this, highlight the LOAD PALETTE option and load the "blocks.palette" file,
again from the "mapedit.demo" directory.

Not all of the blocks can be displayed at once. To cycle through all of the blocks, use the two white
arrows at the top left and top middle of the screen. To paste a block on the map, simply click on it,
move the mouse pointer to the relevant position and press the left mouse button. Easy when you know
how!

A.Blitz Basic Applications

432

A.2.3 I'm a map - edit me!
One of the options that we haven't covered so far is group creation. Groups are what Blitz Basic calls a
number of blocks joined together. Say, for example, that you wanted to move a large section of a map
about. Instead of moving it block by block, you would create a group and manipulate a large number of
blocks around at once.

To create a group of screen blocks you have to highlight the CREATE option from the GROUP menu.
This causes a small window, entitled "Making group - close me when done..." to appear. Now, highlight
the blocks you want to join together, one by one, in order and then close the window by clicking on its
close gadget. All being well your group should appear under the mouse pointer. Try moving it about -
you can now manipulate this group as you would a single screen block.

As with single blocks, you will often find that there are too many groups to display at the top-right of
the screen. To cycle through them use the white arrows at the top-middle and top-right of the display.
To erase a group from memory, simply click on the group icon (at the top-right of the screen) and
select the DELETE option from the GROUP menu.

A.3 Shape-Ed V2
Although the supplied Blitz Basic shape editor is adequate for most users needs, it does not allow direct
manipulation of the physical appearance of shape objects. Shape-Ed V2, being a modified version of
the original shape editor, comes complete with a fairly comprehensive array of tools designed
specifically with this task in mind.

The editor is fairly easy to use and is an excellent example of how Blitz Basic can be used to create
powerful Intuition-based applications.

Important features include:

Convert AMOS Bobs to Blitz shapes
Rotate and mirror shapes
Fill, airbrush, text
Draw circles, rectangles, lines
Cut and paste shapes
Comprehensive animation displayer
Magnify shapes

Blitz users who register with Eclipse Software receive the full program, together with the fully annotated
source code and a laser printed manual. To purchase Shape-Ed V2 send a cheque for seven pounds,
made payable to Aaron Sethi, to the following address:

Eclipse Software
144 Ravenbourne Avenue
Shortlands
Bromley
Kent
England
BR2 OAY
Tel: (081) 464 8416

A.Blitz Basic Applications

433

A.4 BobEd V1.2
BobEd has been developed by Paul Thompson to "offer Blitz Basic users flexibility, power &
convenience in the handling of shape objects". What sets BobEd above Shape-Ed and similar utilities is
its comprehensive set of editing tools. Although the system has a feature list as long as your arm, some
of the more important features are:

256 colour hi-res shape editing (AGA)
Shape grabbing tools
Palette manipulation
Wide range of drawing tools and functions
Handles brushes, anim-brushes, shapes and sprites

As well as an extremely powerful shape editor, the BobEd package includes a number of fully-annotated
example programs which make use of BobEd-created shapes.

BobEd V1.2 costs just £11.95 inc P&P and is available from the following address:

Aspire 2
Strathspey
Pentre Hill
Flint Mountain
Clwyd
England
CH6 5QN
Tel: 0352 761798

A.5 Blitz-Case
Blitz-Case gives Blitz Basic programmers a CASE (Computer Aided Software Engineering) environment
in which to code, allowing the programmer to mix easy flowchart symbols with source code.

The basic structure of a Blitz Basic program can be quickly designed and constructed using easy to
understand flowchart icons. The exact source code is then assigned to certain icons before the
flowchart is converted into Blitz Basic source code. There are icons to replace all the standard BASIC
constructs such as:

If...Then
Select...End Select
Procedures

Icons which can contain source code are called processes. There are three kinds of process icons in
Blitz-Case. All perform exactly the same function - holding a set of BASIC commands - but the different
types can be used to make comprehension of the flowchart easier. The PROCESS is the generic icon, the
INPUT type is usually used for processes which handle user input, and PREPARATION icons are used for
processes which essentially prepare for something else to happen. Anyone who can program Blitz Basic
is the normal way will quickly pick up the CASE techniques.

At its simplest level, Blitz-Case can be used to plan out a program - outlining the procedures and
processes that are likely to be required. At its most complex Blitz-Case can reduce the need for the Blitz
Basic Compiler to simply final compilation, with all the editing and programming done in Blitz-Case.

A.Blitz Basic Applications

434

The program is perhaps the biggest accessory yet to appear for Blitz Basic, and is only the second of its
type to appear on the Amiga (Fed-Case being the other, which is for the C programming language). Full
AmigaGuide instructions are included on the disk, although the program is fairly intuitive to use. If you
are interested in Blitz-Case then contact the author, Richard Jones, at the following address:

Richard Jones
14 Torrington Avenue
Weeping Cross
Stafford
England
ST17 0HZ

Blitz-Case is just one of those things you have to have if you're serious about Blitz Basic. As you can
probably tell, I was impressed!

A.Blitz Basic Applications

435

Appendix B : Useful Programs
One of the best ways of learning any computer language is by typing in programs and routines and
learning from the work of others. This appendix contains several handy programs and routines that can
easily be adapted and incorporated into your own Blitz Basic creations. Thanks must go to all of the
Blitz users who sent in their routines for inclusion. Where possible I have included programs that
illustrate various programming techniques and solve some common programming problems. And you
don't even have to type in the programs - they can all be found on disk 2 of the guide.

B.1 X-Plane starfield
One of the fiendishly clever, yet surprisingly simple routines is the parallaxing dot starfield. Parallaxing is
a technique whereby speed is used to create an illusion of depth, and is achieved by moving individual
pixels around at different speeds. This little proglet can throw up to 44 pixels about with no slow-down
whatsoever, such is the speed of Blitz Basic. A few words of warning - because the routine draws up to
44 pixels on the screen in one frame, you really do need to turn the Runtime Error Debugger off for
silky-smooth movement. Secondly, although the routine can display more than 44 pixels on screen, it
will slow down to snail's pace.

You can customise the routine in a number of ways. To alter the number and speed of the stars simply
change the values of the NUM and SPEED variables respectively. Try improving the routine so that stars
moving at different speeds are plotted in different colours:

; *** X-Plane Starfield
; *** Filename - X-Plane_Starfield.bb2
; *** Author - Neil Wright

NEWTYPE .p
 X.w
 Y.w
 SPEED.w
End NEWTYPE

; *** Number of stars and maximum speed
NUM=40
MXSPEED=8

Dim List STAR.p(NUM)

BLITZ
; *** Open two BitMaps for double-buffering
BitMap 0,320,DispHeight,2
BitMap 1,320,DispHeight,2
Slice 0,44,320,DispHeight,$fff8,2,8,2,320,320
RGB 1,15,15,15
USEPATH STAR()
ResetList STAR()

; *** Generate random numbers

436

While AddItem(STAR())
 \X=Rnd(320)
 \Y=Rnd(DispHeight)
 \SPEED=Rnd(MXSPEED)+1
Wend

; *** Main loop
Repeat
 VWAIT
 Show MAP : MAP=1-MAP : Use BitMap MAP
 Cls
 Gosub STARS
Until Joyb(0)>0
End

; *** Star drawing sub-routine
STARS:
 USEPATH STAR()
 ResetList STAR()
 While NextItem(STAR())
 Plot \X,\Y,1
 \X=QWRAP(\X+\SPEED,0,320)
 Wend
Return

B.2 Z-Plane starfield
This little snippet of code creates a fantastic "hyperspace" effect by moving pixels outwards, from the
centre of the screen, on the z-axis. Up to 115 stars can move in one frame (50Hz) with no slowdown,
but remember to turn the Runtime Error Debugger off for maximum speed.

Again, you can customise the routine to your own needs. The number and speed of the stars can be
controlled by altering the STARS and SPEED variables.

You may like to add a copper list to the background, or if you are feeling really adventurous, then try
making the starfield rotate (hint: you may have to use SIN and COS to achieve this):

; *** Parallaxing Z-Plane Starfield
; *** Filename - Z-Plane_Starfield.bb2
; *** Author - Neil Wright

BLITZ
; *** Open two BitMaps for double-buffering
BitMap 0,320,DispHeight,1
BitMap 1,320,DispHeight,1
Slice 0,44,320,DispHeight,$fff8,1,8,2,320,320
RGB 1,15,15,15
Show 0

; *** Number of stars and speed
STARS=115

Appendix B. Useful Programs

437

SPEED=1.07

Dim X(STARS),Y(STARS)

; *** Generate random numbers
For A=0 To STARS-1
 X(A)=Rnd(320)-160
 Y(A)=Rnd(DispHeight)-(DispHeight/2)
Next A

; *** Main loop
Repeat
 Cls 0
 For A=0 To STARS-1
 Plot X(A)+150,Y(A)+120,1
 X(A)=X(A)*SPEED
 Y(A)=Y(A)*SPEED
 If X(A)>160 Then X(A)=X(A)-160
 If Y(A)>160 Then Y(A)=Y(A)-160
 If X(A)<-160 Then X(A)=X(A)+160
 If Y(A)<-160 Then Y(A)=Y(A)+160
 Next A
 VWait
 Show MAP : MAP=1-MAP : Use BitMap MAP
Until Joyb(0)=1

B.3 Mandelbrot
Mandelbrots were first discovered by the IBM scientist Benoit Mandelbrot in the late 1970s. With Blitz
Basic, fractals and Mandelbrots can be generated in a matter of minutes. You needn't be able to
understand fractals in order to generate amazing pictures - all you need is the following listing:

; *** Simple Mandelbrot
; *** Filename - Mandelbrot.bb2
; *** Author - Neil Wright

BLITZ
BitMap 0,320,DispHeight,4
Slice 0,44,320,DispHeight,$fff8,4,8,16,320,320
Show 0

; *** Set up palette
For A=0 To 15
 RGB A,A,A,0
Next A

; *** Main loop
For Y=0 To 255
 For X=0 To 319
 X1=-2.0+X/81.92

Appendix B. Useful Programs

438

 Y1=1.6-Y/81.92
 COL=0
 A=0
 C=0
 Repeat
 B=A*A-C*C+X1
 C=2*A*C+Y1
 A=B
 COL+1
 Until A*A+C*C>4 OR COL=16
 ; *** Plot pixel
 Plot X,Y,COL
 Next X
Next Y
MouseWait
End

B.4 Mirrored text
The Amiga's Copper (co-processor) chip is not only used to create colourful rainbow backgrounds. As
the Copper executes its instructions in parallel with the main processor, fantastic hardware effects can
also be generated. With careful use of the CUSTOMCOP statement we can mirror BitMap output on the
y-axis:

; *** Mirrored text
; *** Filename - Mirror.bb2
; *** Author - Neil Wright

BLITZ
; *** A touch of hardware trickery
#BPLMOD1=$108
#BPLMOD2=$10A
BitMap 0,320,400,3
Line 0,200,320,200,5
BitMapOutput 0
Colour 4

; *** Text to mirror
A$="Blitz BASIC is tops!"
Locate 40/2-(Len(A$)/2),30
NPRINT A$
A$="(C) Blitz User Group"
Locate 40/2-(Len(A$)/2),32
NPrint A$
Slice 0,44,320,220,$fff8,3,8,32,320,320
; *** More hardware tom-foolery
CO$=Mki$(#BPLMOD1)+Mki$(-122)
CO$+Mki$(#BPLMOD2)+Mki$(-122)
CustomCop CO$,150+44
For A=1 To 180

Appendix B. Useful Programs

439

 VWait
 Show 0,0,A
Next
MouseWait
End

B.5 System reset
For all the tech-heads, here is a useful routine written by Noel Baldacchino which resets the computer
(much the same as pressing the [CTRL] and [Amiga] keys together). It is an excellent example of the
power of Blitz Basic's in-line assembler. Remember to save your work before you execute the program:

; *** System reset routine
; *** Filename - Reset.bb2
; *** Author - Noel Baldacchino

SysReset: MOVE.l $4,a6 ; *** ExecBase
 JSR -150(a6) ; *** SuperState()
 LEA $fc0002,a0
 MOVE.l a0,$20
 JSR (a0) ; *** Go for it!

B.6 DF1: test
Another routine by Noel Baldacchino, this useful snippet of code is used to find out if DF1: (an external
disk drive) is present. Use it when designing multi-disk games to find out if another drive is available, in
order to minimise disk swapping:

; *** DF1: test routine
; *** Filename - Test.bb2
; *** Author - Noel Baldacchino

Gosub DF1_test

If DF1
 NPrint "DF1: is available."
 Else NPrint "No DF1!"
EndIf
MouseWait
End

.DF1_test
 MOVE.l $4,a6
 MOVEQ #0,d0
 LEA ResourceName(pc),a1
 JSR -498(a6)
 MOVE.l d0,a0

Appendix B. Useful Programs

440

 TST.l 52(a0)
 BEQ DF1_OK:
only_DF0:
 DF1=False
 Return
DF1_OK:
 DF1=True
 Return

ResourceName: Dc.b "disk.resource",0

B.7 Splerge!
If you know your AMOS then you will be familiar with the Splerge! routine. Basically it stretches an
image off the screen, starting at the bottom. Why not improve the routine so that the image stretches
onto the screen, or fades away as it disappears?:

; *** Splerge using the Copper
; *** Filename - Splerge.bb2
; *** Author - Neil Wright

#BPLMOD1=$108
#BPLMOD2=$10A
BitMap 0,320,DispHeight,5
; *** Load an IFF screen to splerge
LoadBitMap 0,"INSERT YOUR OWN FILENAME HERE",0
VWait 100
BLITZ
Slice 0,44,320,DispHeight,$fff8,5,8,32,320,320
; *** Hardware bashing
CO$=Mki$(#BPLMOD1)+Mki$(-41)
CO$+Mki$(#BPLMOD2)+Mki$(-41)
Show 0
Use Palette 0
VWait 50
CustomCop CO$,DispHeight
; *** Stretch the display
For A=DispHeight To 0 Step -1
 CustomCop CO$,A
 VWait
Next
VWait
End

Appendix B. Useful Programs

441

B.8 Fireworks
This program, based on an original routine by Paul Thompson, throws a firework into the air and
explodes it. Try adding a splash of colour to the explosion (hint: use a copper list in the background)
and perhaps a few more fireworks here and there. Remember to turn the Runtime Error Debugger off
for maximum speed:

; *** Fireworks
; *** Filename - Fireworks.bb2
; *** Author - Paul Thompson

BLITZ
; *** Initialise arrays
Dim X(100),Y(100),XS(100),YS(100)
BitMap 0,320,256,1
BitMap 1,320,256,1
Slice 0,44,1
Use BitMap 0
RGB 0,0,0,0
RGB 1,15,15,15

Repeat
 TIM=0 : X=160 : Y=255
 XS=Rnd(4)-2 : YS=-Int(Rnd(3)+9)
 Repeat
 ; *** Launch rocket
 Cls
 Boxf X,Y,X+1,Y+1,1
 Y+YS
 YS+0.25
 X+XS
 VWait
 ; *** Double-buffer
 Show MAP : MAP=1-MAP : Use BitMap MAP
 Until YS=0
 For A=0 To 90
 X(A)=X
 Y(A)=Y
 XS(A)=Int(Rnd(15)-7)
 YS(A)=Int(Rnd(15)-7)
 Next A
 Repeat
 ; *** Explode!
 For B=0 To 30
 Plot X(B),Y(B),1
 X(B)+XS(B)
 Y(B)+YS(B)
 YS(B)+.25
 Next B
 VWait
 ; *** Double-buffer

Appendix B. Useful Programs

442

 Show MAP : MAP=1-MAP : Use BitMap MAP
 Cls
 TIM+1
 Until TIM=>100
Until Joyb(0)>0
End

B.9 Scrolling text
If you have ever seen an Amiga demo then you will be familiar with scrolling text.

Here is a little routine which demonstrates scrolling text, Blitz Basic 2 style. The program copies a text
message from the buffer (an area which cannot be seen by the user) onto the screen, one pixel at a
time.

Try adding some clever effects to the text, such as diagonal scrolling. For the ultimate in text scrollers,
why not incorporate the Mirrored Text routine so that the text is mirrored on the x-axis as it scrolls:

; *** Scrolling text
; *** Filename - Scroll_Text.bb2
; *** Author - Neil Wright

BLITZ
BitMap 0,384,270,3
BitMapOutput 0
Slice 0,44,320,256,$fff8,3,8,8,384,384
Use Palette 0
Show 0

; *** Change TEXT$ to anything you like
TEXT$="This is Neil Wright's fabulous text scrolling routine, "
TEXT$+"written completely in Blitz Basic 2! "
Colour 2

; *** Simple colour rainbow
For A=15 To 1 Step -1
 ColSplit 2,A,A,A,-3+A*2
Next A
B=1

; *** Main loop
Repeat
 Locate 43,1
 Print Mid$(TEXT$,B,1)
 Scroll 8,5,350,16,0,5
 VWait
 Let B+1
 If B=Len(TEXT$) Then B=1
Until Joyb(0)>0

Appendix B. Useful Programs

443

B.10 Chipset?
If you are developing software for the Amiga series of computers then you may find it useful to know
what chipset the host machine has. This small (but perfectly-formed) routine by Noel Baldacchino does
just that:

; *** Chipset?
; *** Filename - Chipset.bb2
; *** Author - Noel Baldacchino

Function chipset{}
 MOVE.b $dff07d,d0 ; *** ChipSet ID
 CMP.b #$fc,d0 ; *** ECS?
 BNE.b NoECS
 Function Return 0
NoECS: CMP.b #$f8,d0 ; *** AGA?
 BNE.b NoAGA
 Function Return 1
NoAGA: Function Return 2
End Function

R=chipset{}
Select R
 Case 0 : M$="You have an ECS machine! Upgrade now!"
 Case 1 : M$="Wow! You have an AGA machine!"
 Case 2 : M$="What! Why do you still have an OCS Amiga?"
End Select
NPrint M$
MouseWait
End

Well that's just about it on the programming front, folks; I hope you find the above programs useful.
Now it is your turn - see if you can add some improvements to make the above programs better. As any
hacker knows, the best way to learn about computing is to get lots of hands-on experience. Altering
other people's programs is a good step on the way to producing your own programs completely from
scratch - I would love to see what you come up with. Send your source code to the Blitz User Group,
care of Neil Wright, at the address shown in Chapter 18. And do remember to include an SAE if you
want your programs returned!.

Thank you for using my guide - happy programming, and I hope you enjoy a fruitful relationship with
Blitz Basic 2!

Appendix B. Useful Programs

444

Appendix C : Error Messages

C.1 You're bugging me
The two major stumbling blocks for computer programmers are bugs and errors. These may be typing
mistakes made when you typed the program into the computer, or errors of logic in your code. Before
you can get the program to work correctly you have to find all of the bugs and correct them.

When you are writing programs it often helps to remember that the computer can carry out three main
activities: simple instructions, loops, and making decisions; these are the building blocks of all Blitz Basic
programs. This guide has covered all of the instructions you need in Blitz Basic to tell the computer to
carry out these activities.

There are usually several different ways to write a program and some of them may be shorter and faster
than others. When you are writing a long program is it a good idea to divide it up into lots of sections
with sub-routines or procedures to carry out each activity. Breaking up programs into sections like this
makes it much easier to find any mistakes.

Usually it's a simple matter of correcting spellings and syntax. Blitz Basic does try to help by reporting
errors as they occur, but wouldn't it be nice if we knew what these errors actually meant?

C.2 Blitz error messages
The bold text is the actual message that is reported by Blitz Basic when an error occurs. Underneath is a
brief description of the problem, and/or the possible solution.

"Already Included"

The same source code has been previously included in the code.

Array already Dim'd"

A DIM statement is trying to dimension an array that has already been dimensioned. Arrays may not be
re-dimensioned:

Dim A$(10)
;
Dim A$(10)

"Array is not a List"

A LIST function has been applied to an array that was not dimensioned as a List array.

"Array not Dim'd"

An undimensioned array has been unsuccessfully accessed. Check that the array names are correct.

"Array not found"

An array cannot be found in the main program.

445

"Array not yet Dim'd"

An undimensioned array has been unsuccessfully accessed. Check that the array names are correct.

"Bad Data"

The data following a DATA statement is of incorrect Type. Consult Chapter 1 for the correct Data Types.

"Bad Type for For...Next"

The FOR...NEXT index must be of numeric Type.

"Can't Access Label"

An undefined label has been unsuccessfully accessed. Check spelling of labels and GOTO/GOSUB
branches.

"Can't Assign Constant"

Constant values cannot be assigned to variables.

"Can't Assign Expression"

The expression cannot be evaluated, or the evaluation has generated a value that is incompatible with
the equate.

"Can't Compare Types"

The Type is incompatible with operations such as compares.

"Can't Convert Types"

The two Types are incompatible and one cannot be converted to the other.

"Can't Create in Direct Mode"

Variables cannot and must not be created in direct mode.

"Can't create Macro inside Macro"

Macro definitions cannot be created inside other macro definitions.

"Can't Create Variable inside Dim"

An undefined variable has been used as a dimension parameter with the DIM statement.

"Can't Dim Globals in Procedures"

Global variables cannot be defined within procedure definitions.

"Can't Exchange different types"

The EXCHANGE statement can only swap two variables of the same Type.

"Can't Exchange NewTypes"

The EXCHANGE statement cannot use NewTypes.

Appendix C. Error Messages

446

"Can't Goto/Gosub a Procedure"

Procedures cannot be branched to using GOTO/GOSUB.

"Can't Load Resident"

Blitz Basic cannot find the Resident file listed in the Options requester. Check the pathname.

"Can't Nest Procedures"

Procedures may not be defined within other procedure definitions.

"Can't nest SetErr"

Interrupt handlers cannot be nested.

"Can't open Include"

Blitz Basic cannot find the Include file; check the pathname.

"Can't use comma in Let"

The assigned variable is not a NewType or has only one entry.

"Can't Use Constant"

This is caused by clashing constant names.

"Can't use Set/ClrInt in Local Mode"

Error handling must occur in the primary code.

"Case Without Select"

A CASE statement has been found which does not have a corresponding SELECT statement.

"CEND without CNIF/CSIF..."

A CEND statement has been found which does not have a corresponding CNIF/CSIF statement.

"Clash in Residents"

Residents may not include the same Macro and Constant definitions.

"CNIF/CSIF without CEND"

A CNIF/CSIF statement has been found which does not have a corresponding CEND statement.

"Constant already defined"

Constants may only be defined once.

"Constant not defined"

An undefined constant has been used in an expression.

"Constant Not Found"

An undefined constant has been used in an expression.

Appendix C. Error Messages

447

"Cont only Available in Direct Mode"

CONT can only be called from Direct Mode.

"Cont Option Disabled"

The CONT option in the Options menu has been disabled.

"Default without Select"

A DEFAULT statement has been found which does not have a corresponding SELECT statement.

"Direct Mode Buffer Overflow"

Direct Mode has run out of memory. Try turning the "make smallest code"** option off.

"Duplicate For...Next Error"

The same index has been used within two nested FOR...NEXT loops:

For A=1 To 10
 For A=1 To 10
 Print " "
 Next A
Next A

"Duplicate Label"

The same label has been used more than once within a program.

"Duplicate Offset (Entry) Error"

The NewType has two entries with the same name.

"Duplicate parameter variable"

Parameters listed in Blitz Basic keywords must be unique.

"Duplicate Procedure name"

Procedures must be unique in name.

"Duplicated Type"

Types must be unique in name.

"Element isn't a pointer"

The variable used is not a VAR Type and cannot point to another variable.

"End NewType without NewType"

An END NEWTYPE statement has been found which does not have a corresponding NEWTYPE
statement.

Appendix C. Error Messages

448

"End Select without Select"

An END SELECT statement has been found which does not have a corresponding SELECT statement.

"End SetErr without SetErr"

An END SETERR statement has been found which does not have a corresponding SETERR statement.

"End SetInt without SetInt"

An END SETINT statement has been found which does not have a corresponding SETINT statement.

"Error Reading File"

AmigaDOS has generated an error whilst reading a file from disk. Some of the data may be corrupt or
missing.

"Expression too Complex"

This should never occur.

"For...Next Block too Long"

A FOR...NEXT loop has exceeded the Blitz limit of 32K in size. Try removing or repositioning any non-
essential code.

"For Without Next"

A FOR statement has been found which does not have a corresponding NEXT statement. Make sure the
FOR index matches the NEXT index:

; *** This is wrong
For A=1 To 10
Next B

"Fractions Not allowed in Constants"

Constants can only contain absolute values.

"Garbage at End of Line"

This usually happens when semi-colons are omitted from REMarks.

"If Block too Large"

An IF...ENDIF control structure has exceeded the Blitz limit of 32K in size. Remove any non-essential
code from the structure.

Appendix C. Error Messages

449

"If Without End If"

An IF statement has been found which does not have a corresponding END IF statement. Both
commands must be present:

A=1
If A>0
 Print "A is greater than zero"
 Mousewait
End If

"Illegal Absolute"

The Absolute location specified must be defined and in range.

"Illegal Array type"

This should never occur.

"Illegal Assembler Addressing Mode"

The addressing mode is not available for the opcode. Check the Blitz Basic Reference Manual for more
information.

"Illegal Assembler Instruction Size"

The instruction size is not available. Check the Blitz Basic Reference Manual for more information.

"Illegal Constant"

Constant values may not be assigned to variables.

"Illegal Constant Expression"

Constants can only consist of integers.

"Illegal direct mode command"

Direct Mode cannot execute this command.

"Illegal Displacement"

The Displacement location specified must be defined and in range.

"Illegal Else in While Block"

Check Chapter 4 in this guide for the correct use of the ELSE statement within a WHILE...WEND block.

"Illegal End Procedure"

The procedure return syntax is incorrect. Check the relevant syntax in Chapter 4.

"Illegal Function Type"

Appendix C. Error Messages

450

A function may not return a NewType.

"Illegal Immediate Value"

An Immediate value must be a constant and in range. Check the Blitz Basic Reference Manual for more
information.

"Illegal Interrupt Number"

Amiga Interrupts may range from zero to 13 only.

"Illegal Label Name"

Consult Chapter 1 for the correct use of variables.

"Illegal Local Name"

The variable name is not valid. Consult Chapter 1 for acceptable variable names.

"Illegal number of Dimensions"

List arrays are limited to single dimensions.

"Illegal Operator for Type"

The operator for a Type is incorrect.

"Illegal Parameter Type"

NewTypes cannot be passed to procedures.

"Illegal Procedure Call"

The procedure call syntax is incorrect. Check the relevant syntax in Chapter 4.

"Illegal Procedure return"

The procedure return syntax is incorrect. Check the relevant syntax in Chapter 4.

"Illegal TokeJsr token number"

A library routine referred to by the TOKEJSR statement cannot be accessed. This is usually caused by the
absence of a specific library from DefLibs.

"Illegal Token"

This should never occur.

"Illegal Trap Vector"

The 68000 microprocessor has only 16 trap vectors.

"Illegal Type"

An illegal Type has been used in a function or statement.

"Illegally nested Interrupts"

Appendix C. Error Messages

451

Interrupt handlers cannot be nested.

"Label has been used as a Constant"

A label and a constant have been named the same; labels and constants cannot share the same name.

"Label not Found"

An undefined label has been unsuccessfully accessed. Check for any spelling mistakes in label names.

"Label reference out of context"

This should never occur.

"Library not Available in Direct Mode"

The library is not available in direct mode.

"Library not Found : 'library number'"

A library routine referred to by a token cannot be accessed. This is usually caused by the absence of a
specific library from DefLibs.

"Macro already Defined"

Macros must be unique in name.

"Macro Buffer Overflow"

Increase the size of the macro buffer in the Options requester.

"Macro not Found"

An undefined macro has been unsuccessfully accessed.

"Macro too Big"

Macros are limited to the buffer size defined in the Options requester.

"Macro without End Macro"

A MACRO statement has been found which does not have a corresponding END MACRO statement.

"Macros Nested too Deep"

This should never occur.

"Mismatched Types"

This usually happens when string variables are given numeric values or vice versa. It can also arise when
you try to EXCHANGE the values of string variables with numeric values.

"Next without For"

A NEXT statement has been found which does not have a corresponding FOR statement. Both
commands must be present.

"No Terminating Quote"

Appendix C. Error Messages

452

All text strings should be enclosed in quote marks (e.g. "STRING").

"Not Enough Parameters"

A command has been given too few parameters. Check the relevant command syntax in this guide.

"Not Supported"

This should never occur.

"Numeric Over Flow"

The signed value is too large to fit in the provided variable space.

"Offset not Found"

The offset has not been defined in the NewType definition.

"Only Available in Amiga mode"

A command is only available in Amiga mode. Refer to the relevant command in this guide for correct
mode details. If in doubt, try adding QAMIGA before the command:

; *** Go into a quick Amiga mode
QAMIGA
; *** Execute command
WaitEvent
; *** Return to Blitz mode
BLITZ

"Only Available in Blitz mode"

A command is only available in Blitz mode. Refer to the relevant command in this guide for correct
mode details.

"Optimizer Error! - $'"

This should never occur.

"Precedence Stack Overflow"

This should never occur.

"Previous Case Block too Large"

The CASE section in a SELECT...END SELECT block has exceeded the Blitz limit of 32K in size. Try
removing or repositioning any non-essential code.

"Procedure not found"

An undefined procedure has been called. Check for spelling mistakes and typing errors.

"Repeat Block too large"

REPEAT...UNTIL/FOREVER blocks are limited to 32K in length.

Appendix C. Error Messages

453

"Repeat without Until"

A REPEAT statement has been found which does not have a corresponding UNTIL statement.

"Select without End Select"

A SELECT statement has been found which does not have a corresponding END SELECT statement.

"SetErr not allowed in Procedures"

Error handling cannot be accessed in a procedure definition.

"SetInt without End SetInt"

A SETINT statement has been found which does not have a corresponding END SETINT statement.

"Shared outside of Procedure"

The SHARED statement must be contained within a procedure definition.

"Syntax Error"

There is a syntax error in the program. Either a command is not a Blitz reserved keyword or has an
incorrect parameter - refer to the relevant syntax in this guide. This is an extremely common problem.

"Token Not Found : 'token number'"

An unknown token has been found. Check the spelling of all Blitz reserved keywords.

"Too many comma's in Let"

A NewType has fewer entries than the number of values in LET.

"Too many parameters"

A command has been given too many parameters. Check the relevant command syntax in this guide.

"Type Mismatch"

This usually happens when string variables are given numeric values or vice versa. It can also arise when
you try to EXCHANGE the values of string variables with numeric values.

"Type Not Found"

An undefined Type has been unsuccessfully accessed.

"Type too Big"

The unsigned value is too large to fit in the variable space provided.

"Unterminated Procedure"

A procedure has been created but its definition has not been terminated. The relevant END FUNCTION
or END STATEMENT commands must be present.

"Until without Repeat"

Appendix C. Error Messages

454

An UNTIL statement has been found which does not have a corresponding REPEAT statement. A
REPEAT...UNTIL loop requires both statements to be present, otherwise an error is generated.

"Variable already Shared"

Variables can only be SHARED once.

Appendix C. Error Messages

455

Appendix D : Glossary
The programming world is littered with words which are exclusive to computing. Here is a list of some
of the computer "jargon" used in this guide.

D.1 Glossary of terms
Address

An address is an integer number which identifies a memory location. All memory locations have
different addresses.

AGA

The Amiga 1200 is built around the AGA (Advanced Graphics Architecture) custom chipset which can
display up to 256 colours from a palette of 16.8 million, amongst other things. In Blitz Basic this
translates to more colours, higher resolutions and wider sprites.

Amiga

The world's most powerful home computer. The Amiga was designed by a company called Amiga
Incorporated and was produced by Commodore in 1985. At the time of writing (1995) the Amiga brand
name is over ten years old!

Application

Software prepared for a specific function or set of functions, such as a paint package or map editor.

Array

An array is a list of variables of the same name that are distinguished by subscripts (values that identify
each variable or element in the array).

ASCII

An acronym for American Standard Code for Information Interchange. A set of definitions for bit
composition of characters and symbols. ASCII defines 128 symbols using seven binary digits and one
parity bit.

BASIC

BASIC stands for Beginners All-purpose Symbolic Instruction Code. It uses an easily grasped mixture of
English, numbers, strings, arithmetic signs and parameters which will enable you to start programming
without having to learn a daunting low-level language such as Assembly Language. BASIC is a high-
level language, as opposed to a low-level language such as machine code. Blitz Basic 2 is an optimised
and extended dialect of BASIC.

Binary

Binary is a base two numeric system, in which all numbers are represented by the digits zero and one:

456

Table D.1 : Binary notation

Decimal: 1 2 3 4 5 6 7 8 9 10
Binary: 1 10 11 100 101 110 111 1000 1001 1010

BitMap

BitMaps are used primarily for rendering graphics. Most commands in Blitz Basic for generating
graphics (excluding the Window and Sprite commands) depend upon a currently used BitMap.

Blitter

The Amiga's BLock Image TransfER device, or **Bit blatter", is used for copying large areas of memory
from A to B, or to combine different areas into one single image. Widely used to generate Blitz Basic
shape objects.

Blitting

Blitting is the name for the drawing of shape objects to BitMaps.

Blitz Basic

The world's most powerful BASIC for the Amiga range of computers. Blitz Basic has it all: speed, looks
and a poor set of manuals. If Blitz Basic 2 was a car then it would be a Ferrari!

Blitzfont

Blitzfonts are used in the rendering of text to BitMaps. They must be eight-by-eight non-proportional
fonts.

Buffer

A part of the computer's memory where data for input or output is held until it can be processed. Some
makes of printer also have storage buffers.

Bug

A bug is a mistake, or error in a program. The process of removing these bugs is known as debugging.

B.U.G

B.U.G is a new (at the time of writing) club dedicated to all aspects of Blitz Basic 2. The aims of the club
are simple: to teach people how to create commercial quality games in Blitz and make as much money
from their programs as possible. Or something. Consult Chapter 18 for more information.

Byte

A unit of computer memory. Each individual byte can hold a single character or number from 0-255.

CLI

The Command Line Interface opens a window to communicate directly with AmigaDOS. It offers an
alternative method of control to the Workbench icons.

Appendix D. Glossary

457

Command

Commands are Blitz Basic tokens that can be used as either a function or a statement:

; *** Commands example
; *** Filename - Commands.bb2

ev.l=WaitEvent ; *** as a function
Waitevent ; *** as a statement
MouseWait
End

Comments

Comments, or REMarks are lines in BASIC programs which are not executed. They are used to annotate
programs, so as to make them easier to comprehend. In Blitz Basic comments must be preceded by a
semi-colon:

; *** Comments example
; *** Filename - Comments.bb2

; *** Enter super-speedy Blitz mode
BLITZ
; *** Open Blitz mode display (3 bitplanes)
BitMap 0,320,256,3
Slice 0,44,3
Show 0
; *** Enable BitMap output
BitMapOutput 0
; *** This line prints "Hello"
NPrint "Hello"
; *** Wait for a mouse press
MouseWait
; *** End the program
End

Commercial games

Commercial, or full price, games are those available in the shops. Blitz Basic has been used to create a
number of top commercial games, including Skidmarks (an isometric driving game with hundreds of
frames of animation), Roadkill (an overhead driving game), and Worms (a weird puzzle game). Although
some companies shy away from games created using BASIC, Acid Software, the publishers of Blitz Basic
2, don't. They love them!

Compiler

Compilers take programs written in a form that humans can understand and translate them into
machine code, the simple, fast language of the processor chip inside the computer.

Appendix D. Glossary

458

Co-ordinates

Co-ordinates are used to specify the position of a window, Slice, cursor, or sprite on the display. The X
co-ordinate specifies the horizontal distance from the left-hand side of the screen, and the Y co-
ordinate determines the vertical distance from the top of the screen. Both are measured in pixels.

Copper

The Copper (Co Processor) is used to generate subtly coloured backgrounds, or copper lists - this
device, built into the Agnus chip, can alter colours while the screen is being generated. It can execute
instructions at the same time as the main processor.

Cursor

The cursor is a marker which shows the area of the screen at which you are located. This is the position
at which typed characters will appear. In Ted, the Blitz Basic editor, the cursor is a yellow block which
marks the position in the program where you are working.

Cycling

Cycling in computer terms refers to the ability of colours in a colour palette to change place, or cycle.
This primitive form of animation can be used to produce simple fades and psychedelic displays.

Data

Data describes information entered into or used by a computer.

Debugging

The process of removing bugs, or mistakes, from computer programs. When you are writing a long
program it is a good idea to divide it up into lots of sections with sub-routines or procedures to carry
out major activities. Breaking up programs into sections makes it much easier to find any mistakes.

Decimal

Decimal is the base ten number system in which all numbers are represented by the digits 0-9.

Directory

A directory, or drawer, is a structure on a disk. The space available on disks can be divided into a
hierarchy of directories to allow the individual files to be split up into related categories.

Disk

Diskettes are used for storing and retrieving information, or data. Floppy disks are always spelt with a
"k", nomatter what some people may tell you. Compact Discs are the exception to the rule.

Double buffering

Graphics are drawn on a hidden screen and copied to the displayed screen to create super-smooth
displays.

Expression

An expression is a combination of constants, variables, and other expressions with operators.
Expressions are evaluated by the interpreter to produce a string or numeric value.

Appendix D. Glossary

459

Extra Half-Brite

Usually known as just "Half-Brite", this is a special display mode which doubles the number of colours
on screen by dublicating the existing palette at half its brightness.

File

A file is a sequence of bytes which can be held in memory or stored to disk. These bytes can represent
any type of data, such as pictures, samples, and music.

Floating Point Numbers

Floating Point Numbers are what the Mathematics world refers to as "Real numbers". They are numbers
which can contain a decimal fraction as well as a whole number part (e.g. 16.17).

Fonts

In typography, a complete set of characters of the same size and style.

Fractal

A mathematical pattern created using recursion.

Function

Functions are Blitz Basic tokens that require parameters in parentheses, and return a value:

; *** Functions example
; *** Filename - Functions.bb2

N=Abs(-10)
MouseWait
End

Gadget

Gadgets are boxes which appear when the program requires you to enter or alter information. They are
selected by clicking on the gadget once with the mouse pointer, although some gadgets require you to
enter text (string gadgets).

HAM

Hold And Modify (HAM) is a special display mode which allows the full Amiga colour palette (4096
colours) to be displayed.

Handle

The single-pixel reference point of a graphical image. Commonly referred to as a "hot spot".

Hexadecimal

The hexadecimal system counts in units of 16 rather than ten, so a total of 16 different digits is needed
to represent the different numbers. The digits from zero to nine are used as normal, but the digits from
ten to 15 are signified by the letters A to F inclusive:

Appendix D. Glossary

460

Table D.2 : Hexadecimal notation

Hex digit: 0 1 2 3 4 5 6 7 8 9 A B C D E F
Decimal: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Icon

Icons are visual representations of tools, projects, drawers, or disks.

IFF

IFF stands for Interchangeable File Format. Devised by Electronic Arts, it has been adopted as the
standard way of storing pictures and sound on the Amiga.

Include files

These are files of predefined data which may be "included" in a source code file using a special
directive. When the program is compiled these additional files are compiled as part of the main source
code.

Integer

Integers are whole numbers (e.g. 10, 16 and 256), as opposed to floating point numbers, which do have
a fractional part.

Interlace

A special display mode which doubles the vertical screen, or Slice, resolution.

Interrupt

Interrups are hardware signals which cause the Amiga's processor to stop what it is doing (usually the
execution of the main program) and execute a pre-defined piece of code called an interrupt routine, or
interrupt handler.

Keyboard shortcut

A method for performing a mouse action, such as the selection of a menu item, by pressing a key.

Keyword

The Blitz Basic 2 instruction set consists of a number of reserved keywords which perform a specific
task. It includes the names of all Blitz Basic statements, functions, commands and operators. Examples
include PRINT, EDIT$, WAITEVENT and <>.

Kilobyte (K)

The kilobyte is a unit of measurement of computer memory. One kilobyte is equal to 1,024 bytes.
Although the name implies 1,000, the kilobyte is not, and never will be, 1,000 bytes - it is a corruption of
the English language!

List arrays

Appendix D. Glossary

461

List arrays differ from normal arrays in that Blitz Basic keeps an internal count of how many elements
are stored in the List and an internal pointer to the current element within the List. List arrays are
restricted in size to one dimension.

Macro

A single statement which can be used to represent a larger sequence of functions, statements or
commands.

Mark Sibly

Father of Blitz Basic and all-round programming God. Mark hand-crafted Blitz using assembly language.
Wow!

Menu

Menus are lists of items. You can see the titles of the menus available at a particular time by pressing
the right-hand mouse button. Menu items are accessed by holding down the right mouse button and
highlighting the correct item, before releasing the mouse button.

Menu item

An option which appears below a menu title.

NewType

In addition to the six primitive types available, programmers can also create their own custom types, or
NewTypes. A NewType is a collection of fields, similar to a database or C structure, which enables you to
group together relevant fields in one variable type. NEWTYPE must be followed by a list of entry names
separated by colons and/or newlines:

; *** NewTypes example
; *** Filename - NewTypes.bb2

NEWTYPE .p
 X.w
 Y.w
 SPEED.w
End NEWTYPE

MouseWait
End

Palettes

Palettes, or palette objects, are temporary storage areas of colour information. This information can be
taken either from an IFF file or created from scratch using Blitz Basic's palette functions.

Parallaxing

Parallaxing is a technique whereby parts of the display are scrolled at different speeds to create an
illusion of depth. Because the television or monitor screen is 2-dimensional, all moving graphics appear

Appendix D. Glossary

462

flat. Parallax scrolling attempts to overcome the limits imposed by the screen, to produce a pseudo-3-
dimensional display.

Parameter

A parameter is a piece of user-defined data which forms part of a Blitz Basic command. Parameters are
used to control how commands operate:

; *** Parameters example
; *** Filename - Parameters.bb2

BLITZ
BitMap 0,320,256,3
Slice 0,44,3
Show 0
BitMapOutput 0
X=20
Y=10
; *** X and Y are parameters
Locate X,Y
NPrint "Moved, I'm sure"
MouseWait
End

Pixels

This is short for picture elements, allegedly. Pixels are the tiny graphical elements which make up the
display. A standard, low-resolution PAL display has a resolution of 320 (horizontal) by 256 (vertical)
pixels, or 81,920 pixels. By increasing the resolution, higher graphical definition can be achieved.

Procedure

A procedure is a specially defined module of code that can be called from your main program. Blitz
Basic 2 supports two types of procedure: the function-type procedure and the statement-type
procedure. A procedure which does not return a value is known as a statement and a procedure which
does return a value is known as a function.

Proglet

A small snippet of code which demonstrates a basic principle or programming technique. Some
programmers refer to these as routines, or pseudo-code, but I prefer proglets!

Program

A list of instructions which tell the computer to carry out a particular task or tasks. Blitz Basic is a
program, and so is the code it creates.

Public Domain (PD)

Public Domain, or PD, describes the thousands of copyright-free disks that can be copied and sold by
anybody. PD is non-profit making and as such very cheap to obtain. Blitz Basic 2 has been used to
create some spectacular Public Domain software, including Zombie Apocalypse (an Operation Wolf-

Appendix D. Glossary

463

style shoot-em-up), Defender (an update of one of the original arcade games), Insectoids (a vertically
scrolling shoot-em-up similar to Galaxians), and Speed (a very slick card game).

Qualifier

Key which "qualifies", or changes the state of, a key-press. Examples include Shift, Ctrl, Alt and L
Amiga/R Amiga.

Rainbow

A background colour graduation created using the COLSPLIT statement. Rainbows can provide a
relatively good alternative to BitMap graphics in computer games.

RAM disk

A storage area which can be used to temprarily hold programs in memory for faster access than loading
from disk.

Redraw

To redisplay the contents of a display. Technique used when the status of a gadget is altered.

Resolution

This describes the dimensions, in pixels, of a particular display mode. A low-res PAL screen has a
resolution of 320 (horizontal) by 256 (vertical) pixels. A hi-res NTSC screen has a resolution of 640
(horizontal) by 200 (vertical) pixels.

Routine

An independent section of code which either works as part of the main program and can be reused
again and again, or demonstrates a programming technique. See also "proglet".

Sample

Short sounds that can be played individually or as part of a song, or module. Samples are stored
digitally in the Amiga's memory.

Scrolling

Scrolling is a technique whereby a display larger than the physical screen (a super-BitMap) is moved
about one step at a time.

Slice

Slices are Blitz Basic objects which are the heart of Blitz mode's powerful graphics system. Through the
use of Slices, many weird and wonderful graphical effects can be achieved, effects not normally possible
in Amiga mode. This includes such things as dual playfield displays, smooth scrolling, double buffering
and much more!

Speech

One of the fun utilities provided with the Amiga was the narrator device; this allowed pre-AGA Amigas
to "talk". For reasons known only to themselves, Commodore chose to remove the "speech" facility
from Workbench 3. A recent update has added speech to Blitz, so that owners of all Amigas (including
those equipped with the AGA chipset) can access this fabulous facility through BASIC.

Appendix D. Glossary

464

Sprites

Sprites are graphical elements which can be moved independent of the background. They are fast-
moving but are restricted in size, colour and number.

Stack

The stack is an area of memory which is used by Blitz Basic for temporary information storage.

Statement

Statements are Blitz Basic tokens that perform an action but do not return a value. Their arguments do
not require parentheses:

; *** Statements example
; *** Filename - Statements.bb2

NPrint "Blitz Basic 2"
MouseWait
End

String

A string variable is one which contains text, rather than numbers. Strings are surrounded by quotation
marks and all string names must end with the dollar ($) character.

Sub-routine

A sub-routine is a section of code that is separate to the main program. A sub-routine is a sort of mini-
program within a program. It carries out a particular task, such as updating the display, or controlling
object movement. All sub-routines are preceded by a program label and may be called using the GOTO
and GOSUB statements.

Title bar

The optional top border of a screen or window, which displays the screen and window titles
respectively.

Toggle

An option, such as a gadget, which can be toggled between two states (usually on and off).

Tracker

A Tracker is a sequencing program which allows you to enter musical motes and arrange them to create
a song, or module. The best Tracker program on the Amiga is the commercial OctaMed program.

Types

Blitz BASIC currently supports six different types of variable, five numeric types for numeric data and
one string type ($) for strings:

Appendix D. Glossary

465

Table D.3 : Blitz Basic Types

Type Suffix Range Accuracy Bytes Example
==
Byte .b +/- 128 Integer 1 Neil.b=125
Word .w +/- 32768 Integer 2 Dan.w=30000
Long .l +/- 2147483648 Integer 4 Jon.l=$dff000
Quick .q +/- 32768.0000 1/65536 2 Richard.q=500/7
Float .f +/- 9e18 1/10e18 4 Craig.f=4e7

Variable

Variables are numeric pointers used to store pieces of information. A variable containing numbers is
called a numeric variable and one which contains letters and symbols is known as a string variable.
Values can be assigned to variables as follows:

; *** Variables example
; *** Filename - Variables.bb2

Let A=5
; *** Assign the value 5 to variable A
NPrint A
; *** Print the contents of variable A
MouseWait
End

Venus

The second-closest planet to the sun, Venus has an oven-hot surface temperature of over 470 degrees
Celsius and a diameter of nearly 7,500 miles. Venus is a happening planet!

Window

A rectangular area of the screen that can accept or display information. A window may have an optional
title bar and/or gadgets in its border.

Workbench

Workbench is the Amiga's icon-based "point and click" Graphical User Interface. There are three main
Workbenches in popular usage: Workbench 1.3 (Amiga 500), Workbench 2.X (Amiga 500+/600), and
Workbench 3.X (Amiga 1200/4000).

WYSIWYG

What You See Is What You Get, or WYSIWYG is a term used in word processing and desk-top publishing
which refers to the screen display, relative to the final output. WYSIWYG does not feature in this guide
in any shape or form, so what you see is definitely not what you get!

Appendix D. Glossary

