|
Usage: waterman [options] lattice Use sphere-ray intersection for producing waterman polyhedra. Lattice can be SC, FCC, or BCC Options -h,--help this help message (run 'off_util -H help' for general help) --version version information -r <r,n> clip radius. r is radius taken to optional root n. n = 2 is sqrt -q <cent> center of lattice, in form "x_val,y_val,z_val" (default: origin) -m <mthd> 1 - sphere-ray intersection 2 - z guess (default: 1) -C <opt> c - convex hull only, i - keep interior, s - supress (default: c) -t defeat computational error testing for sphere-ray method -v verbose output (on computational errors) -l <lim> minimum distance for unique vertex locations as negative exponent (default: 12 giving 1e-12) -o <file> write output to file (default: write to standard output) Coloring Options (run 'off_util -H color' for help on color formats) -V <col> vertex color -E <col> edge color (if convex hull) -F <col> face color (if convex hull) lower case outputs map indexes. upper case outputs color values key word: s,S color by symmetry using face normals key word: c,C color by symmetry using face normals (chiral) -T <tran> face transparency. valid range from 0 (invisible) to 255 (opaque)
waterman -r 10,2 fcc | antiview
waterman -r 100,2 fcc -F S | antiview
waterman -q 0.5,0.5,0.5 -r 100,2 fcc -F S | antiview
For more details about these polyhedra see Waterman Polyhedra on Steve Waterman's site.
The program uses an efficient algorithm that makes it suitable for calculating Waterman polyhedra up to root 1,000,000 and more.
Up:
Programs and Documentation
Next:
n_icons - sphericon like polyhedra