pktools 2.6.7
Processing Kernel for geospatial data
pkfilter

program to filter raster images

SYNOPSIS

Usage: pkfilter -i input -o output [-f filter | -perc value | -srf file [-srf file]* -win wavelength [-win wavelength]* | -wout wavelength -fwhm value [-wout wavelength -fwhm value]* -win wavelength [-win wavelength]*]

Options: [-dx value [-dy value] | -dz value] [-nodata value]

Advanced options: check table

Description

This utility implements spatial and spectral filtering for raster data. In the spatial domain (X, Y), the filter typically involves a rectangular convolution kernel (moving window). To avoid image shifting, the size of the window should be odd (3, 5, 7, ...). You can set the window sizes in X and Y directions separately with the options -dx and -dy. A circular kernel (disc) is applied if option -circ is set. An overview of the supported filters (option -f|–filter) is given below. You can create customized filters by defining your own filter taps (multiplicative elements of the filter kernel) via an ascii file (option -tap). In the spectral/temporal domain (Z) you can filter multi-band raster inputs. The kernel filter size can be set with the option -dz (use odd values only).

Filters in spatial (dx, dy) and spectral/temporal (dz) domain

Implemented as moving window: choose dx, dy or dz > 1 and odd (3, 5, 7, etc.)

The number of output bands equals number of input bands

filter description
dilate morphological dilation
erode morphological erosion
close morpholigical closing (dilate+erode)
open morpholigical opening (erode+dilate)
smoothnodata values smooth nodata values (set nodata option!)

Example: "Smooth" (interpolate) nodata in spectral/temporal domain (-dz 1), using a linear interpolation

pkfilter -i input.tif -o smoothed.tif -dz 1 -f smoothnodata -interp linear

Example: Filter input.tif in spatial domain with morphological dilation filter with kernel size 3x3.

pkfilter -i input.tif -o dilated.tif -dx 3 -dy 3 -f dilate

Implemented as either moving window or statistical function in spectral/temporal domain (choose dz=1).

In case of moving window, the number of output bands equals number of input bands. In case dz=1, the single output band is calculated as the result of the statistical function applied to all bands.

filter description
nvalid report number of valid (not nodata) values in window
median perform a median filter in spatial (dx, dy) or spectral/temporal (dz) domain
var calculate variance in window
min calculate minimum in window
max calculate maximum in window
sum calculate sum in window
mean calculate mean in window
stdev calculate standard deviation in window
savgolay Savitzky-Golay filter (check examples page!)
percentile calculate percentile value in window
proportion calculate proportion in windoww

Example: Median filter in spatial domain

pkfilter -i input.tif -o median.tif -dx 3 -dy 3 -f median

Example: Calculate statistical variance in spectral/temporal domain (single output band)

pkfilter -i input.tif -o var.tif -dz 1 -f var

Wavelet filters

Wavelet filter in in spatial or spectral/temporal (set dz = 1) domain.

The number of output bands equals number of input bands

filter description
dwt discrete wavelet transform
dwti discrete inverse wavelet transform
dwt_cut discrete wavelet + inverse transform, using threshold option to cut percentile of coefficients

Example: Calculate discrete wavelet in spatial domain

pkfilter -i lena.tif -o lena_dwt.tif -f dwt

Example: Calculate discrete wavelet in spectral/temporal domain

pkfilter -i timeseries.tif -o dwt.tif -f dwt -dz 1

Wavelet filter implemented in spectral/temporal domain only.

The number of output bands equals number of input bands

filter description
dwt_cut_from discrete wavelet + inverse transform, setting all high frequence coefficients to zero (scale >= threshold)

Example: Calculate low frequency time series based on discrete wavelet + inverse transform in spectral/temporal domain, retaining only coefficients until scale 3

pkfilter -i timeseries.tif -o lowfrequency.tif -f dwt_cut_from -dz 1 -t 4

Filters in spatial domain only (dx, dy > 1 and odd).

The number of output bands equals number of input bands.

filter description
mrf Markov random field
ismin pixel is minimum?
ismax pixel is maximum?
shift perform a pixel shift in spatial window
scramble scramble pixels in a spatial window
mode (majority voting) perform a majority voring (set class option)
sobelx horizontal edge detection
sobely vertical edge detection
sobelxy diagonal edge detection (NE-SW)
sobelyx diagonal edge detection (NW-SE)
countid count digital numbers in window
order rank pixels in order
density calculated the density
homog central pixel must be identical to all other pixels within window
heterog central pixel must be different than all other pixels within window
sauvola Sauvola's thresholding method

Example: Sobel edge detection in horizontal direction

pkfilter -i lena.tif -o sobelx.tif -f sobelx -dx 5 -dy 5

Options

  • use either -short or --long options (both --long=value and --long value are supported)
  • short option -h shows basic options only, long option --help shows all options
    short long type default description
    i input std::string input image file
    o output std::string Output image file
    f filter std::string filter function (nvalid, median, var, min, max, sum, mean, dilate, erode, close, open, homog (central pixel must be identical to all other pixels within window), heterog (central pixel must be different than all other pixels within window), sobelx (horizontal edge detection), sobely (vertical edge detection), sobelxy (diagonal edge detection NE-SW),sobelyx (diagonal edge detection NW-SE), density, countid, mode (majority voting), only for classes), smoothnodata (smooth nodata values only) values, ismin, ismax, order (rank pixels in order), stdev, mrf, dwt, dwti, dwt_cut, dwt_cut_from, scramble, shift, savgolay, percentile, proportion)
    srf srf std::string list of ASCII files containing spectral response functions (two columns: wavelength response)
    fwhm fwhm double list of full width half to apply spectral filtering (-fwhm band1 -fwhm band2 ...)
    dx dx double 3 filter kernel size in x, use odd values only
    dy dy double 3 filter kernel size in y, use odd values only
    dz dz int filter kernel size in z (spectral/temporal dimension), must be odd (example: 3).. Set dz>0 if 1-D filter must be used in band domain
    nodata nodata double nodata value(s) (used for smoothnodata filter)
    r resampling-method std::string near Resampling method for shifting operation (near: nearest neighbour, bilinear: bi-linear interpolation).
    co co std::string Creation option for output file. Multiple options can be specified.
    wt wavelet std::string daubechies wavelet type: daubechies,daubechies_centered, haar, haar_centered, bspline, bspline_centered
    wf family int 4 wavelet family (vanishing moment, see also http://www.gnu.org/software/gsl/manual/html_node/DWT-Initialization.html)
    nl nl int 2 Number of leftward (past) data points used in Savitzky-Golay filter)
    nr nr int 2 Number of rightward (future) data points used in Savitzky-Golay filter)
    ld ld int 0 order of the derivative desired in Savitzky-Golay filter (e.g., ld=0 for smoothed function)
    m m int 2 order of the smoothing polynomial in Savitzky-Golay filter, also equal to the highest conserved moment; usual values are m = 2 or m = 4)
    class class short class value(s) to use for density, erosion, dilation, openening and closing, thresholding
    t threshold double 0 threshold value(s) to use for threshold filter (one for each class), or threshold to cut for dwt_cut (use 0 to keep all) or dwt_cut_from, or sigma for shift
    tap tap std::string text file containing taps used for spatial filtering (from ul to lr). Use dimX and dimY to specify tap dimensions in x and y. Leave empty for not using taps
    tapz tapz double taps used for spectral filtering
    pad pad std::string symmetric Padding method for filtering (how to handle edge effects). Choose between: symmetric, replicate, circular, zero (pad with 0).
    win wavelengthIn double list of wavelengths in input spectrum (-win band1 -win band2 ...)
    wout wavelengthOut double list of wavelengths in output spectrum (-wout band1 -wout band2 ...)
    d down short 1 down sampling factor. Use value 1 for no downsampling). Use value n>1 for downsampling (aggregation)
    beta beta std::string ASCII file with beta for each class transition in Markov Random Field
    interp interp std::string akima type of interpolation for spectral filtering (see http://www.gnu.org/software/gsl/manual/html_node/Interpolation-Types.html)
    ot otype std::string Data type for output image ({Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/CInt16/CInt32/CFloat32/CFloat64}). Empty string: inherit type from input image
    of oformat std::string GTiff Output image format (see also gdal_translate).
    ct ct std::string color table (file with 5 columns: id R G B ALFA (0: transparent, 255: solid). Use none to omit color table
    circ circular bool false circular disc kernel for dilation and erosion

Usage: pkfilter -i input -o output [-f filter | -perc value | -srf file [-srf file]* -win wavelength [-win wavelength]* | -wout wavelength -fwhm value [-wout wavelength -fwhm value]* -win wavelength [-win wavelength]*]

Examples

Some examples how to use pkfilter can be found here