|
Usage: canonical [options] [input_file] Read a polyhedron from a file in OFF format. Canonicalize or planarize it. Uses algorithms by George W. Hart, http://www.georgehart.com/ http://www.georgehart.com/virtual-polyhedra/conway_notation.html http://www.georgehart.com/virtual-polyhedra/canonical.html If input_file is not given the program reads from standard input. Options -h,--help this help message (run 'off_util -H help' for general help) --version version information -n <itrs> maximum number of iterations (default: no limit) -l <lim> minimum distance change to terminate, as negative exponent (default: 12 giving 1e-12) -d <int> divergence test. 0 for no test. (default 10) -M <mthd> canonicalizing method, m - mathematica version of canonicalization (default) n - conway notation version of canonicalization l - mathematica planarize portion only p - conway notation planarize (face centroids reciprocal) q - conway notation planarize (face centroids magnitude reciprocal) x - face centroids only (no reciprocal) planarize method -C <cent> initial 'centering' x - none, c - centroid (-M p and -M l default) s - centroid and project vertices onto a sphere (-M m default) p - centroid and pre-planarized (-M n default) q - centroid and pre-planarized with magnitude reciprocal -z <n> status reporting every n lines. -1 for no status. (default 50) -o <file> write output to file (default: write to standard output) Mathematica Canonicalize Options (-M m and -M l) -e <perc> percentage to scale the edge tangency error (default: 50) -p <perc> percentage to scale the face planarity error (default: 20) Pre-planarization Options (-C p and -C q) -i <itrs> maximum number of pre-planarize iterations (default: no limit)
off_util cube | off_trans -S 1,2,3 | canonical | antiview
geodesic -c 2 ico | canonical | pol_recip -a | antiview
George Hart has a page on canonicalization.
Uses algorithms by George W. Hart, http://www.georgehart.com/. The 'Mathematica' algorithms have been written to follow George Hart's Mathematica implementation
Up:
Programs and Documentation
Next:
sph_rings - rings of points on a sphere