Chapter 10: Eventsand Event Handling for Computer Graphics
Introduction

Graphics programming can focus entirely on creating one single image based on a set of data, but
more and more we are seeing the value of writing programs that allow the user to interact with the
world through graphical presentations, or that allow the user to control the way an image is
created. These are called interactive computer graphics programs, and the ability to interact with
information through an image is critically important to the success of thisfield.

Our emphasisin this chapter is on graphical interaction, not on user interfaces. Certainly many
user interfaces use graphical presentations that give information to the user, take graphical actions,
and interpret the results for program control, but we simply view these as applications of our
graphics. Latein the chapter we introduce the MUI (Micro User Interface) system that allows you
to add a primitive interface to your OpenGL programs, and we believe that you should try to
understand the nature of the communication about images that can be supported by an external user
interface, but a genuine discussion of user interfacesis much too deep for usto undertake here. In
general, we subscribe to the view that computer interaction should be designed by persons who are
specially trained in human factors, interface design, and evaluation, and not by computer scientists,
but computer scientists will implement the design. This chapter and the chapter on selection
describe how such implementation can be done.

Interactive programming in computer graphics generally takes advantage of the event-handling
capabilities of modern systems, so we must understand something of what events are and how to
use them in order to write interactive graphics programs. Events are fairly abstract and comein
several varieties, so we will need to go into some details as we develop thisidea below. But
modern graphics APIs handle events pretty cleanly, and you will find that once you are used to the
idea, it is not particularly difficult to write event-driven programs. Y ou should realize that some
basic APIs do not include event handling on their own, so you may need to use an extension to the
API for this.

Definitions

An eventis atransition in the control state of a computer system. Events can come from many
sources and can cause any of a number of actions to take place as the system responds to the
transition. In general, we will treat an event as an abstraction, a concept that we use to design
interactive applications, that provides a concrete piece of datato the computer system. An event
record is aformal record of some system activity, often an activity from a device such as a
keyboard or mouse. An event record is a data structure that contains information that identifies the
event and any data corresponding to the event. Thisis not a user-accessible data structure, but its
values are returned to the system and application by appropriate system functions. A keyboard
event record contains the identity of the key that was pressed and the location of the cursor when it
was pressed, for example; a mouse event record contains the mouse key that was pressed, if any,
and the cursor’ s location on the screen when the event took place. Event records are stored in the
event queue, which is managed by the operating system,; this keeps track of the sequence in which
events happen and serves as a resource to processes that deal with events. When an event occurs,
its event record isinserted in the event queue and we say that the event is posted to the queue. The
operating system manages the event queue and as each event gets to the front of the queue and a
process requests an event record, the operating system passes the record to the process that should
handleit. In general, events that involve a screen location get passed to whatever program owns
that location, so if the event happens outside a program’ s window, that program will not get the
event.

Let’s consider a straightforward example of auser action that causes an event in an application, and
think about what is actually done to get and manage that event. Thiswill vary from system to
system, so we will consider two alternatives. In thefirst, the application includes a system utility
that polls for events and, when one occurs in the system, identifies the event and calls an
appropriate event handler. In the second, the application initializes an event loop and provides
event handlers that act like callbacks to respond to events as the system getsthem. A graphics API
might use either model, but we will focus on the event loop and callback model.

Programs that use events for control—and most interactive programs do this—manage that control
through functions that are called event handlers. While these can gain access to the event queue in
a number of ways, most APIs use functions called callbacksto handle events. Associating a
callback function with an event is called registering the callback for the event. When the system
passes an event record to the program, the program determines what kind of event it isand if any
callback function has been registered for the event, passes control to that function. In fact, most
interactive programs contain initialization and action functions, calback functions, and a main
event loop. The main event loop invokes an event handler whose function is to get an event,
determine the callback needed to handle the event, and pass control to that function. When that
function finishesits operation, control is returned to the event handler.

What happens in the main event loop is straightforward—the program gives up direct control of the
flow of execution and placesit in the hands of the user. From this point throughout the remainder
of the execution of the program, the user will cause events to which the program will respond
through the callbacks that you have created. We will see many examples of this approach in this,
and later, chapters.

A callback isafunction that is executed when a particular event is recognized by the program. This
recognition happens when the event handler takes an event off the event queue and the program has
expressed aninterest in the event. The key to being able to use a certain event in a program, then,
isto express an interest in the event and to indicate what function is to be executed when the event
happens—the function that has been registered for the event.

Some examples of events
Events are often categorized in a set of classes, depending on the kind of action that causes the

event. Below we describe one possible way of classifying events that gives you the flavor of this
concept.

keypress events, such as keyDown, keyUp, keyStillIDown, ... Note that there may be two
different kinds of keypress events: those that use the regular keyboard and those that use
the so-called “ special keys’ such as the function keys or the cursor control keys. There
may be different event handlers for these different kinds of keypresses. Y ou should be
careful when you use specia keys, because different computers may have different special
keys, and those that are the same may be laid out in different ways.

mouse events, such as leftButtonDown, leftButtonUp, leftButtonStillDown, ... Note that
different “species’ of mice have different numbers of buttons, so for some kinds of mice
some of these events are collapsed.

menu events, such as selection of an item from a pop-up or pull-down menu or submenu, that
are based on menu choices.

window events, such as moving or resizing a window, that are based on standard window
manipulations.

1/1/02 Page 10.2

system events such asidle and timer, that are generated by the system based on the state of the
event queue or the system clock, respectively.

software events which are posted by programs themselves in order to get a specific kind of
processing to occur next.

These events are very detailed, and many of them are not used in the APIs or APl extensions
commonly found with graphics. However, all could be used by going deeply enough into the
system on which programs are being devel oped.

Note that event-driven actions are fundamentaly different from actions that are driven by
polling—that is, by querying a device or some other part of the system on some schedule and
basing system activity on theresults. There are certainly systems that operate by polling various
kinds of input and interaction devices, but these are outside our current approach.

The vocabulary of interaction

When users are working with your application, they are focusing on the content of their work, not
on how you designed the application. They want to be able to communicate with the program and
their datain ways that feel natural to them, and it is the task of the interface designer to create an
interface that feels very natural and that doesn’t interfere with their work. Interface designisthe
subject of adifferent course from computer graphics, but it is useful to have alittle understanding
of the vocabulary of interaction.

We have been focusing on how to program interaction with the kind of devices that are commonly
found in current computers. keyboards or mice. These devices have distinctly different kinds of
behaviorsin users minds. When you get away from text operations, keyboards give discrete
input that can be interpreted in different ways depending on the keys that are pressed. They are
basically devices that make abstract selections, with the ability select actions as well as objects.
The keyboard input that navigates through simple text games is an example of action selection.
The mouse buttons are al so selection devices, although they are primarily used to select graphical
objects on the screen, including control buttons as well as displayed objects. The keyboard and
mouse buttons both are discrete devices, providing only afinite number of well-defined actions.

The mouse itself has adifferent kind of meaning. It provides a more continuous input, and can be
used to control continuous motion on the screen. This can be the motion of a selected object asit is
moved into a desired position, or it can be an input that will cause motion in an object. The motion
that the mouse controls can be of various kinds as well—it can be a linear motion, such as moving
the eye point across a scene, or it can be arotational motion, such as moving an object by changing
the angles defining the object in spherical coordinates.

When you plan the interaction for your application, then, you should decide whether a user will see
the interaction as a discrete selection or as a continuous control, and then you should implement the
interaction with the keyboard or mouse, as determined by the user’ s expected vocabulary.

A word to thewise...

This section discusses the mechanics of interaction through event handling, but it does not cover
the critical questions of how a user would naturally control an interactive application. There are
many deep and subtle issues involved in designing the user interface for such an application, and
this modul e does not begin to cover them. The extensive literature in user interfaces will help you
get astart in this area, but a professional application needs a professional interface, one designed,
tested, and evolved by persons who focusin thisarea. When thinking of areal application, heed
theold cliché: Kids, don’t try thisat home!

1/1/02 Page 10.3

The examples below do their best to present user controls that are not impossibly clumsy, but they
are designed much more to focus on the event and callback than on a clever or smooth way for a
user to work. When you write your own interactive projects, think carefully about how a user
might perceive the task, not just about an approach that might be easiest for you to program.

Eventsin OpenGL

The OpenGL API generally uses the Graphics Library Utility Toolkit GLUT (or a similar
extension) for event and window handling. GLUT defines a number of kinds of events and gives
the programmer a means of associating a callback function with each event that the program will
use. In OpenGL with the GLUT extension, this main event loop is quite explicit asacall to the
functiongl ut Mai nLoop() asthelast action in the main program.

Callback registering

Below we will list some kinds of events and will then indicate the function that is used to register
the callback for each event. Following that, we will give some code examples that register and use
these events for some programming effects. This now includes only examples from OpenGL, but
it should be extensible to other APIsfairly easily.

Event Callback Registration Function

idle gl ut 1 dl eFunc(functi onnane)

requires a callback function with template

voi d functi onnane(voi d)
asaparameter. Thisfunction isthe event handler that determines what isto
be done at each idle cycle. Often this function will end with a call to
gl ut Post Redi spl ay() asdescribed below. Thisfunction is used to
define what action the program is to take when there has been no other event
to be handled, and is often the function that drives real-time animations.

display gl ut D spl ayFunc(functi onnane)

requires a callback function with template
voi d functi onname(voi d)

as a parameter. Thisfunction isthe event handler that generates a new
display whenever the display event is received. Note that the display
function is invoked by the event handler whenever a display event is
reached; this event is posted by the gl ut Post Redi spl ay() function
and whenever awindow is moved or reshaped.

reshape gl ut ReshapeFunc(f uncti onnane)
requires a callback function with template
voi d functionnane(int, int)
as a parameter. This function manages any changes needed in the view
setup to accomodate the reshaped window, which may include a fresh
definition of the projection. The parameters of the r eshape function are
the width and height of the window after it has been changed.

keyboard gl ut Keyboar dFunc(keybd)
requires a callback function with template

voi d functionnane(unsi gned char, int, int)
as aparameter. This parameter function is the event handler that receives

the character and the location of thecursor (i nt x, i nt y) whenakey

1/1/02 Page 10.4

Specid

menu

1/1/02

ispressed. Asisthe casefor all callbacks that involve a screen location, the
location on the screen will be converted to coordinates relative to the
window. Again, this function will often end with a cdl to
gl ut Post Redi spl ay() to re-display the scene with the changes caused
by the particular keyboard event.

gl ut Speci al Func(speci al)
requires a callback function with template
voi d functionnanme(int key, int x, int y)

as aparameter. This event is generated when one of the “special keys’ is
pressed; these keys are the function keys, directiona keys, and a few
others. Thefirst parameter isthe key that was pressed; the second and third
are the integer window coordinates of the cursor when the keypress
occurred as described above. The usual approach is to use a specid
symbolic name for the key, and these are described in the discussion below.
The only difference between the special and keyboard callbacks is that the
events come from different kinds of keys.

i nt gl ut Creat eMenu(functi onnane)
requires a callback function with template

voi d functionnane(int)
as a parameter. Theinteger value passed to the function is the integer
assigned to the selected menu choice when the menu is opened and a choice
is made; below we describe how menu entries are associated with these
values.

Thegl ut Cr eat eMenu() function returns avaue that identifies the menu
for later operations that can change the menu choices. These operations are
discussed later in this chapter when we describe how menus can be
manipulated. The gl ut Cr eat eMenu() function creates a menu that is
brought up by a mouse button down event, specified by

gl ut At tachMenu(event),
which attaches the current menu to an identified event, and the function

gl ut AddMenuEnt ry(string, int)
identifies each of the choices in the menu and defines the value to be
returned by each one. That is, when the user selects the menu item labeled
with the string, the value is passed as the parameter to the menu callback
function. The menu choices are identified before the menu itsalf is attached,
asillustrated in the lines bel ow:

gl ut AddMenuEnt ry("text", VALUE);

gl ut At t achMenu(GLUT_RI GHT_BUTTON)
Thegl ut At t achMenu() function signifiesthe end of creating the menu.

Note that the Macintosh uses a dightly different menu attachment with the
same parameters,

gl ut Att achMenuNane(event, string),
that attaches the menu to a name on the system menu bar. The Macintosh
menu is activated by selecting the menu name from the menu bar, while the
windows for Unix and Windows are popup windows that appear where the
mouse is clicked and that do not have names attached.

Along with menus one can have sub-menus—items in amenu that cause a
cascaded sub-menu to be displayed when it is selected. Sub-menus are

Page 10.5

mouse

mouse active motion

created two ways, here we describe adding a sub-menu by using the
function
gl ut AddSubMenu(string, int)

where the string is the text displayed in the origina menu and the integer is
the identifier of the menu to cascade from that menu item. When the string
item is chosen in the original menu, the submenu will be displayed. With
this GLUT function, you can only add a sub-menu as the last item in a
menu, so adding a sub-menu closes the creation of the main menu.
However, later in this chapter we describe how you can add more
submenus within a menu.

gl ut MouseFunc(functi onnane)
requires acallback function with atemplate such as

void functionnane(int button, int state,

i nt nmouseX, int nouseY)
as a parameter, where but t on indicates which button was pressed (an
integer typically made up of one bit per button, so that a three-button mouse
can indicate any vaue from one to seven), the state of the mouse
(symbolic values such as GLUT_DOWN to indicate what is happening with
the mouse) — and both raising and releasing buttons causes events — and
integer values xPos and yPos for the window-relative location of the
cursor in the window when the event occurred.

The mouse event does not use this function if it includes a key that has been
defined to trigger a menu.

gl ut Mot i onFunc(functi onnane)
requires a callback function with template

voi d functionnane(int, int)
as a parameter. The two integer parameters are the window-relative
coordinates of the cursor in the window when the event occurred. This
event occurs when the mouse is moved with one or more buttons pressed.

mouse passive motion gl ut Passi veMot i onFunc(functi onnane)

timer

requires a callback function with template

voi d functionnane(int, int)
as a parameter. The two integer parameters are the window-relative
coordinates of the cursor in the window when the event occurred. This
event occurs when the mouse if moved with no buttons pressed.

gl ut Ti mer Func(nsec, tiner, val ue)
requires an integer parameter, here caled nsec, that is to be the number of
milliseconds that pass before the callback is triggered; a callback function,
herecaledt i mer , with atemplate such as

void timer(int)
that takes an integer parameter; and an integer parameter, here caled
val ue, that isto be passed to thet i mer function whenitiscalled.

Note that in any of these cases, the function NULL is an acceptable option. Thus you can create a
template for your code that includes registrations for all the events your system can support, and
simply register the NULL function for any event that you want to ignore.

1/1/02

Page 10.6

Besides the kind of device events we generally think of, there are also software events such as the
display event, created by acall to gl ut Post Redi spl ay() . There are also device events for
devices that are probably not found around most undergraduate laboratories. the spaceball, a six-
degree-of -freedom deviceused in high-end applications, and the graphics tablet, adevice familiar to
the computer-aided design world and still valuable in many applications. If you want to know
more about handling these devices, you should check the GLUT manual.

Some details

For most of these callbacks, the meaning of the parameters of the event callback is pretty clear.
Most are either standard characters or integers such as window dimensions or cursor locations.
However, for the special event, the callback must handle the specia characters by symbolic names.
Many of the names are straightforward, but some are not; the full table is:

Function keys F1 through F12: GLUT_KEY_F1through GLUT_KEY_F12
Directiona keys: GLUT KEY_LEFT, GLUT KEY_UP,

GLUT_KEY_RIGHT, GLUT_KEY_DOWN
Other specia keys: GLUT_KEY_PAGE UP(Page up)

GLUT_KEY_PAGE_DOWN (Page down)
GLUT_KEY_HOME (Home)
GLUT_KEY_END (End)
GLUT_KEY_INSERT (insert)

So to use the special keys, use these symbolic names to process the keypress that was returned to
the callback function.

Moreon menus

Earlier in the chapter we saw how we could create menus, add menu items, and specify the menu
callback function. But menus are complex resources that can be managed with much more detail
than this. Menus can be activated and deactivated, can be created and destroyed, and menu items
can be added, deleted, or modified. The basic toolsto do this are included in the GLUT toolkit and
are described in this section.

Y ou will have noticed that when you define a menu, the gl ut G eat eMenu() function returns
an integer value. This value is the menu number. While the menu you are creating is the active
menu while you are creating it, if you have more than one menu you will have to refer to a
particular menu by its number when you operate on it. In order to see what the active menu
number is at any point, you can use the function

i nt gl utGet Menu(voi d)
that ssmply returns the menu number. |f you need to change the active menu at any point, you can
do so by using its number as the argument to the function

voi d gl ut Set Menu(i nt nenu)
This will make the menu whose number you choose into the active menu so the operations we
describe below can be doneto it. Note that both main menus and sub-menus have menu numbers,
so it isimportant to keep track of them.

It is also possible to detach a menu from a button, in effect deactivating the menu. Thisis done by
the function

voi d gl ut Det achMenu(event)
which detaches the event from the current menu.

Menus can be dynamic. Y ou can change the string and the returned value of any menu entry with
the function

1/1/02 Page 10.7

voi d gl ut ChangeToMenuEntry(int entry, char *name, int val ue)
where the name is the new string to be displayed and the new value is the value that the event
handler isto return to the system when thisitem is chosen. The menu that will be changed isthe
active window, which can be set as described above.

While you may only create one sub-menu to a main menu with the gl ut AddSubMenu()
function we described above, you may add sub-menus later by using the

voi d gl ut ChangeToSubMenu(int entry, char *nane, int nenu)
function. Herethe entry isthe number in the current menu (the first item is numbered 1) that isto
be changed into a submenu trigger, the name is the string that is to be displayed at that location,
and menu is the number to be given to the new sub-menu. Thiswill alow you to add sub-menus
to any menu you like at any point you like.

Menus can also be destroyed as well as attached and detached. The function

voi d gl ut DestroyMenu(int mnenu) .
destroys the menu whose identifier is passed as the parameter to the function.

These details can seem overwhelming until you have a reason to want to change menus as your
program runs. When you have a specific need to make changes in your menus, you will probably
find that the GLUT toolkit has enough toolsto let you do the job.

Code examples

This section presents four examples. Thisfirstisa simple animation that uses an idle event
callback and moves a cube around acircle, in and out of the circle's radius, and up and down. The
user has no control over thismotion. When you compile and run this piece of code, seeif you can
imagine the volume in 3-space inside which the cube moves.

The second example uses keyboard callbacks to move a cube up/down, left/right, and front/back
by using a simple keypad on the keyboard. This uses keys within the standard keyboard instead of
using special keys such as a numeric keypad or the cursor control keys. A numeric keypad is not
used because some keyboards do not have them; the cursor control keys are not used because we
need six directions, not just four.

The third example uses a mouse callback to pop up a menu and make a menu selection, in order to
set the color of acube. Thisisasomewhat trivial action, but it introduces the use of pop-up
menus, which are avery standard and useful tool.

Finally, the fourth example uses a mouse callback with object selection to identify one of two
cubes that are being displayed and to change the color of that cube. Again, thisisnot adifficult
action, but it calls upon the entire selection buffer process that is the subject of another later module
in this set. For now, we suggest that you focus on the event and callback concepts and postpone a
full understanding of this example until you have read the materia on selection.

Idle event callback

In this example, we assume we have afunction named cube() that will draw asimple cube at the
origin (0, 0, 0) . We want to move the cube around by changing its position with time, so we
will let the idle event handler set the position of the cube and the display function draw the cube
using the positions determined by the idle event handler. Much of the code for a complete program
has been left out, but thisillustrates the relation between the display function, the event handler,
and the callback registration.

1/1/02 Page 10.8

G.fl oat cubex
GLfl oat cubey
G.fl oat cubez
Gfloat tine

noaun
o000
Leee

voi d display(void)

{
gl PushMatri x();
gl Transl at ef (cubex, cubey, cubez);
cube();
gl PopMat ri x();
}

voi d ani mat e(voi d)
#define deltaTinme 0.05
/1 Position for the cube is set by nodeling tine-based behavi or
/1 Try multiplying the tinme by different constants to see how t hat
/1 behavi or changes.

time += deltaTinme; if (time > 2.0*MPlI) tine -= 2*0*M_PI;
cubex = sin(tinme);

cubey cos(tinme);

cubez = cos(tine);

gl ut Post Redi spl ay();
}
void main(int argc, char** argv)
{

/* Standard GLUT initialization precedes the functions bel ow/

Qiﬁt[ﬁsplayFunc(display);
gl ut I dl eFunc(ani mat e) ;

nyinit();
gl ut Mai nLoop() ;
}

Keyboard callback

Again we start with the familiar cube() funcntion. Thistime we want to let the user move the
cube up/down, left/right, or backward/forward by means of simple keypresses. We will use two
virtual keypads:

Q W | O
A S J K
Z X N M

with the top row controlling up/down, the middle row controlling left/right, and the bottom row
controlling backward/forward. So, for example, if the user presses either Qor |, the cube will
move up; pressing Wor Owill move it down. The other rows will work similarly.

Again, much of the code has been omitted, but the display function works just as it did in the
example above: the event handler sets global positioning variables and the display function

1/1/02 Page 10.9

performs a translation as chosen by the user. Note that in this example, these transl ations operate
in the direction of faces of the cube, not in the directions relative to the window.

G.fl oat cubex
GLfl oat cubey
G.fl oat cubez
Gfloat tine

noaun
o000
Leee

voi d display(void)

{
gl PushMatri x();
gl Transl at ef (cubex, cubey, cubez);
cube();
gl PopMat ri x();
}
voi d keyboard(unsigned char key, int x, int vy)
{
ch ="' ";
switch (key)
{
case '(' case 'Q
case 'i' case 'I|'
ch = key; cubey -= 0.1; break
case 'w case 'W :
case 'o' case 'O
ch = key; cubey += 0.1; break
case 'a' case 'A
case 'j' case 'J'
ch = key; cubex -= 0.1; break
case 's' case 'S
case 'k’ case 'K
ch = key; cubex += 0.1; break
case 'z’ case 'Z
case 'n' case 'N
ch = key; cubez -= 0.1; break
case 'Xx' case 'X
case 'm : case 'M
ch = key; cubez += 0.1; break
}
gl ut Post Redi spl ay();
}
void main(int argc, char** argv)
{

/* Standard GLUT initialization */
gl ut Di spl ayFunc(di spl ay);
gl ut Keyboar dFunc(keyboar d) ;

nyinit();
gl ut Mai nLoop() :
}

The similar function, gl ut Speci al Func(. ..), canbeusedinavery similar way to read input
from the specia keys (function keys, cursor control keys, ...) on the keyboard.

1/1/02 Page 10.10

Menu callback

Again we start with the familiar cube() function, but this time we have no motion of the cube.
Instead we define a menu that allows us to choose the color of the cube, and after we make our
choice the new color is applied.

#defi ne RED 1
#def i ne GREEN 2
#defi ne BLUE 3
#defi ne WH TE 4
#defi ne YELLOW 5

voi d cube(voi d)

{

G.float color[4];
/1 set the color based on the nenu choice

switch (col orNanme) {

case RED
color[0] = 1.0; color[1] = 0.0;
color[2] = 0.0; color[3] = 1.0; break
case GREEN:
color[0] = 0.0; color[1] = 1.0;
color[2] = 0.0; color[3] = 1.0; break
case BLUE:
color[0] = 0.0; color[1] = 0.0;
color[2] =1.0; color[3] = 1.0; break
case WHI TE:
color[0] =1.0; color[1] = 1.0;
color[2] = 1.0; color[3] = 1.0; break
case YELLOW
color[0] =1.0; color[1] = 1.0;
color[2] = 0.0; color[3] = 1.0; break
}
/1 draw the cube
}
voi d display(void)
cube();
}
voi d options_nmenu(int input)
{
col or Nane = input;
gl ut Post Redi spl ay();
}
void main(int argc, char** argv)
{
gl ut Cr eat eMenu(opti ons_nenu) ; /1 create options nenu

1/1/02 Page 10.11

}

gl ut AddMenuEntry(" Red", RED); /1 1 add nenu entries
gl ut AddMenuEntry(" Green", GREEN); /1 2

gl ut AddMenuEnt ry(" Bl ue", BLUE); /1 3

gl ut AddMenuEntry("Wiite", VWH TE); /1 4

gl ut AddMenuEntry("Yel l ow', YELLOW; // 5

gl ut Att achMenu(GLUT_RI GHT_BUTTON, "Col ors");

nyinit();
gl ut Mai nLoop() ;

Mouse callback for object selection

This example is more complex because it illustrates the use of a mouse event in object selection.
This subject is covered in more detail in the later chapter on object selection, and the full code
example for this example will also be included there. We will create two cubes with the familiar
cube() function, and we will select one with the mouse. When we select one of the cubes, the

cubes will exchange colors.

In this example, we start with afull Mouse(. . .) callback function, the r ender (. . .) function
that registersthe two cubes in the object name list, and the DoSel ect (...) function that
manages drawing the scene in G._ SELECT mode and identifying the object(s) selected by the
position of the mouse when the event happened. Finally, we include the statement in the mai n()

function that registers the mouse callback function.

gl ut MouseFunc(Mbuse) ;

voi

{

Vo
{
/1
11
11

1/1/02

d Mouse(int button, int state, int nouseX, int nouseY)

if (state == GLUT_DOWN) { /* find which object was sel ected */
hit = DoSel ect ((GLint) nouseX, (GLint) nouseY);

}
gl ut Post Redi spl ay() ;

d render(GLenum node)

Al ways draw the two cubes, even if we are in G_._SELECT node,
because an object is selectable iff it is identified in the nane
list and is drawn in G._SELECT node
if (mbde == G._SELECT)
gl LoadNane(0) ;
gl PushMatri x();
gl Translatef(1.0, 1.0, -2.0);
cube(cubeCaol or 2);
gl PopMat ri x();
if (mbde == G._SELECT)
gl LoadNane(1);
gl PushMatri x();
gl Translatef(-1.0, -2.0, 1.0);
cube(cubeCol or1);
gl PopMat ri x();
gl Flush();

Page 10.12

gl ut SwapBuffers();

@

int DoSelect(Gint x, Gint y)
Glint hits, tenp;

gl Sel ect Buf fer (MAXHI TS, sel ect Buf);
gl Render Mode(GL_SELECT) ;

gl I ni t Nanmes() ;

gl PushNane(0) ;

/1 set up the view ng nodel

gl PushiMatri x();

gl Mat ri xMode(GL_PROJECTI ON) ;

gl Loadl dentity();
/1 set up the matrix that identifies the picked object(s), based on
/1 the x and y values of the selection and the information on the
/1 viewport

gl uPi ckMatrix(x, windH - vy, 4, 4, vp);

gl dearColor(0.0, 0.0, 1.0, 0.0);

gl d ear (G._COLOR BUFFER BI T);

gl uPer spective(60.0,1.0,1.0,30.0);

gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();
/1 eye poi nt center of view up

gl uLookAt (10.0, 10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

render (GL_SELECT); // draw the scene for selection

gl PopMat ri x();
/1 find the nunmber of hits recorded and reset node of render
hits = gl Render Mbde(G._RENDER) ;
/'l reset view ng nodel into G.L_MODELVI EW node
gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl uPer spective(60.0,1.0,1.0,30.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
/1 eye poi nt center of view up
gl uLookAt (10.0, 10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
/1 return the |abel of the object selected, if any
if (hits <= 0) {
return -1;
}

/1 carry out the color changes that will be the effect of a selection
tenp = cubeCol orl; cubeCol orl = cubeCol or2; cubeColor2 = tenp;
return sel ect Buf [3];

}
void main(int argc, char** argv)
{
gl 'ut MouseFunc(Mouse) ;
nyinit();
gl ut Mai nLoop();
}

1/1/02 Page 10.13

M ouse callback for mouse motion

This example shows the callback for the motion event. This event can be used for anything that
uses the position of a moving mouse with button pressed as control. It isfairly common to see a
graphics program that lets the user hold down the mouse and drag the cursor around in the
window, and the program responds by moving or rotating the scene around the window. The
program this code fragment is from uses the integer coordinates to control spin, but they could be
used for many purposes and the application code itself is omitted.

void nmotion(int xPos, int yPos)
{
spi nX
spi nY

(GLfl oat) xPos;
(GLfl oat) yPos;

}

int main(int argc, char** argv)

{
gI ht Mot i onFunc(noti on);
nyinit();

gl ut Mai nLoop() ;
}

1/1/02 Page 10.14

TheMUI (Micro User Interface) facility
Prerequisites

An understanding of event-driven programming and some experience using the simple events and
callbacks from the GLUT toolkit in OpenGL, and some review of interface capabilitiesin standard
applications.

Introduction

There are many kinds of interface tools that we are used to seeing in applications but that we cannot
readily code in OpenGL, even with the GLUT toolkit. Some of these are provided by the MUI
facility that is auniversal extension of GLUT for OpenGL. With MUI you can use dliders,
buttons, text boxes, and other tools that may be more natural for many applications than the
standard GLUT capabilities. Of course, you may choose to write your own tools as well, but you
may choose to use your time on the problem at hand instead of writing an interface, so the MUI
tools may be just what you want.

MUI has agood bit of the look and feel of the X-Moatif interface, so do not expect applications you
write with thisto look like they are from either the Windows or Macintosh world. Instead, focus
on the functionality you need your application to have, and find away to get this functionality from
the MUI tools. The visible representation of these tools are called widgets, just as they arein the X
Window System, so you will see this term throughout thest notes.

This chapter isbuilt on Steve Baker's“A Brief MUI User Guide,” and it shares similar properties:
it is based on asmall number of examples and some modest experimental work. Itisintended asa
guide, not as amanual, though it is hoped that it will contribute to the literature on this useful tool.

Definitions

The capabilities of MUI include pulldown menus, buttons, radio buttons, text labels, text boxes,
and vertical and horizontal diders. We will outline how each of these work below and will include
some genera code to show how each isinvoked.

The main thing you must realize in working with MUI isthat MUI takes over the event handling
from GLUT, so you cannot mix MUI and GLUT event-handling capabilities in the same window.
This means that you will have to create separate windows for your MUI controls and for your
display, which can feel somewhat clumsy. Thisis atradeoff you must make when you design
your application — are you willing to create a different kind of interface than you might expect in a
traditional application in order to use the extraMUI functionality? Only you can say. But before
you can make that choice, you need to know what each of the MUI facilities can do.

Menubars. A MUI menu bar isessentially aGLUT menu that is bound to a MUI object and then
that object is added to a Ullist. Assuming you have defined an array of GLUT menus named
nyMenus| . ..], you can use the function to create a new pulldown menu and then use the
function to add new menusto the pulldown menu list:

mui Cbj ect *nui NewPul | down() ;

mui AddPul | downEnt ry(mui Gbj ect *obj, char *title,int glut_nenu,

int is_help);

An example of the latter function would be

myMenubar = mui NewPul | down() ;

nmui AddPul | downEnt ryg rryl\/bnubar "File", nyMenu, 0);
wheretheis_help value would be 1 tor the last menu in the menu bar, becausetradltlonally the help

menu is the rightmost menu in amenu bar.

1/1/02 Page 10.15

According to Baker [Bak], there is apparently a problem with the pulldown menus when the
GLUT window is moved or resized. The reader is cautioned to be careful in handling windows
when the MUI facility is being used.

Buttons. abutton is presented as a rectangular region which, when pressed, sets avalue or carries
out a particular operation. Whenever the cursor isin the region, the button is highlighted to show
that it isthen selectable. A buttonis created by the function

mui NewButton(int xmn, int xmax, int ymn, int ymax)
that hasamui Cbj ect * return value. The parameters define the rectangle for the button and are
defined in window (pixel) coordinates, with (0, 0) at the lower left corner of the window. In
genera, any layout in the MUI window will be based on such coordinates.

Radio buttons. radio buttons are similar to standard buttons, but they come in only two fixed sizes
(either a standard size or amini size). The buttons can be designed so that more than one can be
pressed (to allow a user to select any subset of a set of options) or they can be linked so that when
oneis pressed, all the others are un-pressed (to alow a user to select only one of a set of options).
Like regular buttons, they are highlighted when the cursor is scrolled over them.

Y ou create radio buttons with the functions

nmui Qbj ect *nui NewRadi oButton(int xmn, int ymn)

mui Gbj ect *mui NewTi nyRadi oButton(int xmn, int ymn)
wherethexm n andym n are the window coordinates of the lower |eft corner of the button. The
buttons are linked with the function

voi d mui Li nkButt ons(buttonl, button2)
wherebut t onl and but t on2 are the names of the button objects; to link more buttons, call the
function with overlapping pairs of button names as shown in the example below. In order to clear
all the buttonsin agroup, call the function below with any of the buttons as a parameter:

voi d mui d ear Radi o(nui Cbj ect *button)

Textboxes: atext box isafacility to allow auser to enter text to the program. The text can then be
used in any way the application wishes. The text box has some limitations; for example, you
cannot enter a string longer than the text box’ s length. However, it aso gives your user the ability
to enter text and use backspace or delete to correct errors. A text box is created with the function
mui Gbj ect *ui NewText box(xm n, xmax, ym n)
whose parameters are window coordinates, and there are functions to set the string:
mui Set TBSt ri ng(obj, string)
to clear the string:
nmui G ear TBSt ri ng(obj)
and to get the value of the string:
char *mui Get TBString (rmui Coject *obj).

Horizontal diders in general, sliders are widgets that return a single value when they are used.
The value is between zero and one, and you must manipulate that value into whatever range your
application needs. A dider is created by the function
mui NewHSl i der (int xmn,int ymn,int xmax,int scenter,int shalf)
wherexm n andym n are the screen coordinates of the lower |eft corner of the dider, xmax isthe
screen coordinate of the right-hand side of the slider, scent er is the screen coordinate of the
center of the dider’smiddle bar, and shal f isthe half-size of the middle bar itself. In the event
callback for the dlider, the function nmui Get HSVal (nui Cbj ect *obj) isused to return the
value (as afloat) from the slider to be used in the application. In order to reverse the process — to
make the dider represent a particular value, use the function
mui Set HSVal ue(nui Coj ect *obj, float val ue)

1/1/02 Page 10.16

Vetica diders vertical sliders have the same functionality as horizontal diders, but they are
aligned vertically in the control window instead of horizontally. They are managed by functions
that are amost identical to those of horizontal diders:

mui NewsSlider(int xmn,int ymn,int ymax,int scenter,int shalf)

mui Get VSval ue(nmui Goj ect *obj, float val ue)

nmui Set VSval ue(nui Goj ect *obj, float val ue)

Textlabels atext label isapiece of text on the MUI control window. This allows the program to
communicate with the user, and can be either afixed or variable string. To set afixed string, use
nmui NewLabel (int xmn, int ymn, string)
with xmin and ymin setting the lower left corner of the space where the string will be displayed.
To define avariable string, you give the string anui Obj ect nameviathevariation
nmui Gbj ect *mui NewLabel (int xmn, int ymn, string)
to attach aname to the label, and use the nui ChangelLabel (mui Coj ect *, string)
function to change the value of the string in the label.

Using the MUI functionality

Before you can use any of MUI’s capabilities, you must initidize the MUI system with the
functionmui I ni t (), probably called from the mai n() function as described in the sample code
below.

MUI widgets are managed in Ul lists. You create a Ul list with the mui NewUl Li st (i nt)
function, giving it an integer name with the parameter, and add widgets to it as you wish with the
function mui AddToUI Li st (listid, object). You may create multiple lists and can
choose which list will be active, allowing you to make your interface context sensitive. However,
Ul lists are essentially static, not dynamic, because you cannot remove items from alist or delete a
list.

All MUI capabilities can be made visible or invisible, active or inactive, or enabled or disabled.
This adds some flexibility to your program by letting you customize the interface based on a
particular context in the program. The functionsfor this are:

voi d mui Set Vi si bl e(nui Cbj ect *obj, int state);

voi d mui Set Acti ve(mnui Cbject *obj, int state);

voi d mui Set Enabl e(mui Cbj ect *obj, int state);

i nt mui Get Vi si bl e(rmui by ect *obj);

i nt mui Get Acti ve(mui Cbj ect *obj);

i nt mui Get Enabl e(mui Cbj ect *obj);

Figure 11.1 shows most of the MUI capabilities: labels, horizontal and vertical sliders, regular and
radio buttons (one radio button is selected and the button is highlighted by the cursor as shown),
and atext box. Some text has been written into the text box. This gives you an idea of what the
standard MUl widgets look like, but because the MUI source is available, you have the
opportunity to customize the widgets if you want, though this is beyond the scope of this
discussion. Layout isfacilitated by the ability to get the size of aMUI object with the function

voi d mui Get bj ect Si ze(nmui Gbj ect *obj, int *xmn, int *ymn,

int *xmax, int *ymax);

1/1/02 Page 10.17

Cantral Fanel BE

Cantral Paned
nonzontal sikar
A1
wirtical sldar Sphata sbw
& | L5 Harm
I <!
25y
g ptian Sl
= 4 Lae
! " .
e b
TYour text go=s hl.-r'l=|

Figure 11.1: the set of MUI facilities on a single window

MUI object callbacks are optional (you would probably not want to register a callback for afixed
text string, for example, but you would with an active item such as a button). In order to register a
callback, you must name the object when it is created and must link that object to its callback
function with

voi d mui Set Cal | back(nui Gbj ect *obj, call backFn)
where a callback function has the structure

voi d cal | backFn(mui Cbj ect *obj, enum mui Ret ur nVal ue
Note that this callback function need not be unique to the object; in the example below we define a
single callback function that is registered for three different sliders and another to handle three
different radio buttons, because the action we need from each is the same; when we need to know
which object handled the event, thisinformation is available to us as the first parameter of the
callback.

If you want to work with the callback return value, the declaration of the mui Ret ur nVval ue is:
enum nui Ret ur nVal ue {
MJ _NO_ACTI ON,
MJ _SLI DER_MOVE,
MJ _SLI DER_RETURN,
MJ _SLI DER_SCROLLDOWW,
MJ _SLI DER_SCROLLUP,
MJ _SLI DER_THUWVB,
MJ _BUTTON_PRESS,
MUl _TEXTBOX_RETURN,
MJ _TEXTLI ST_RETURN,
MJl _TEXTLI ST_RETURN_CONFI RM

1
so you can look at these values explicitly. For the example below, the button press is assumed
because it is the only return value associated with a button, and the slider is queried for its value
instead of handling the actual MUI action.
Some examples
Let’s consider a simple application and see how we can create the controls for it using the MUI

facility. The application is color choice, commonly handled with three sliders (for R/G/B) or four
diders (for R/G/B/A) depending on the need of the user. This application typically provides away

1/1/02 Page 10.18

to display the color that is chosen in aregion large enough to reduce the interference of nearby
colorsin perceiving the chosen color. The application we have in mind is avariant on this that not
only shows the color but also shows the three fixed-component planes in the RGB cube and draws
a sphere of the selected color (with lighting) in the cube.

The design of this application is built on an example in the Science Examples chapter that shows
three cross-sections of areal function of three variables. In order to determine the position of the
cross sections, we use a control built on MUI sliders. We also add radio buttonsto allow the user
to define the size of the sphere at the intersection of the cross-section dlices.

Selected code for this application includes declarations of muiObjects, callback functions for diders
and buttons, and the code in the main program that defines the MUI objects for the program, links
them to their callback functions, and adds them to the single MUI list we identify. The main issue
isthat MUI callbacks, like the GLUT callbacks we met earlier, have few parameters and do most
of their work by modifying global variables that are used in the other modeling and rendering
operations.

/'l sel ected declarations of mui Objects and wi ndow identifiers
nmui bj ect *Rslider, *Gslider, *Bslider;

nmui Gbj ect *Rl abel, *d abel, *Bl abel;

nmui Obj ect *noSphereB, *smal | SphereB, *|argeSphereB;

int mui Wn, glWn;

/1 callbacks for buttons and sliders
voi d readButton(nui Gbj ect *obj, enum nui ReturnVal ue rv) {
if (obj == noSphereB)
sphereControl = 0;
if (obj == small SphereB)
sphereControl = 1;
if (obj == largeSphereB)
sphereControl = 2;
gl ut Set Wndow glWn);
gl ut Post Redi spl ay();

}

voi d readSliders(nmui Qbj ect *obj, enum mui ReturnVal ue rv) {
char rs[32], gs[32], bs[32];
gl ut Post Redi spl ay();

rr

g9
bb

mui Get HSVal (Rsl i der);
nui Get HSVal (Gsl i der);
nmui Get HSVal (Bsl i der);

sprintf(rs,"9%.2f",rr);
mui ChangelLabel (R abel , rs);
sprintf(gs,"%.2f", gg);
nui ChangelLabel (d abel , gs);
sprintf(bs,"%.2f", bb);
nmui ChangelLabel (Bl abel , bs);

DX = -4.0 + rr*8.0;
DY = -4.0 + gg*8.0;
DZ = -4.0 + bb*8.0;

gl ut Set W ndow(gl Wn) ;
gl ut Post Redi spl ay();

1/1/02 Page 10.19

void mai n(int argc, char** argv){

11

/1

11

/1

11

1/1/02

char rs[32], gs[32], bs[32];

Create MJ control w ndow and its call backs
glutlinitD spl ayMbde (GLUT_DOUBLE | GLUT_RGBA);
gl utlni t WndowSi ze(270, 350);

gl utl ni t WndowPosi ti on(600, 70);

mui Wn = gl ut Creat eW ndow " Control Panel");

gl ut Set W ndow(nui W n) ;

mui lnit();

mui NewUl Li st (1);

mui Set Acti veUl Li st(1);

Define color control sliders
nmui NewLabel (90, 330, "Color controls");

mui NewLabel (5, 310, "Red");
sprintf(rs,"9%.2f",rr);

Rl abel = mui NewLabel (35, 310, rs);

Rsli der = nui NewHSl i der (5, 280, 265, 130, 10);
nmui Set Cal | back(Rsl i der, readSliders);

mui NewLabel (5, 255, "G een");
sprintf(gs,"%.2f", gg);

d abel = nui NewLabel (35, 255, gs);

Gslider = mui NewHSlider (5, 225, 265, 130, 10);
nmui Set Cal | back(Gslider, readSliders);

mui NewLabel (5, 205, "Blue");
sprintf(bs,"%.2f", bb);

Bl abel = mui NewLabel (35, 205, bs);

Bsli der = nui NewHSl i der (5, 175, 265, 130, 10);
nmui Set Cal | back(Bslider, readSliders);

define radi o buttons

mui NewLabel (100, 150, "Sphere size");
noSpher eB = nui NewRadi oButton(10, 110);
snal | Spher eB = nui NewRadi oButt on(100, 110);
| ar geSpher eB = nui NewRadi oButt on(190, 110);
mui Li nkBut t ons(noSpher eB, snal | Spher eB)

mui Li nkBut t ons(smal | SphereB, | argeSphereB)
nmui LoadBut t on(noSpher eB, "None");

nui LoadBut t on(snal | SphereB, "Small");

nmui LoadBut t on(| ar geSphereB, "Large");

nmui Set Cal | back(noSpher eB, readBut t on) ;
nmui Set Cal | back(smal | SphereB, readButton);
nmui Set Cal | back(| ar geSpher eB, readButton);
mui Cl ear Radi o(noSpher eB)

add sliders and radio buttons to U list 1
nmui AddToUl Li st (1, Rslider);

nmui AddToUl Li st (1, Gslider);

mui AddToUl Li st (1, Bslider);

mui AddToUl Li st (1, noSpher eB)

nmui AddToUl Li st (1, snml | SphereB)

nmui AddToUl Li st (1, | argeSphereB)

Create display window and its call backs

Page 10.20

The presentation and communication for this application are shown in Figure 11.2 below. Asthe
sliders set the R, G, and B values for the color, the numerical values are shown above the sliders
and the three planes of constant R, G, and B are shown in the RGB cube. At the intersection of
the three planesis drawn a sphere of the selected color in the size indicated by the radio buttons.
The RGB cube itself can be rotated by the usual keyboard controls so the user can compare the
selected color with nearby colorsin those planes, but you have the usual issues of active windows:
you must make the display window active to rotate the cube, but you must make the control
window active to use the controls.

Isteraciive coler picker i BGED rele HE Ceatrnl Fanel [
Color commis
ERT 5
LI L |
Y S
Sphere Sce
sl G L

Figure 11.2: the color selector in context, with both the display and control windows shown
Installing MUI for Windows systems

MUI comes with the GLUT release, so if you have GLUT on your system you probably also have
MUI. But if you do not have GLUT, when you download and uncompress the GLUT release you
will have severa header files (in the i ncl ude/ mui directory) and a couple of libraries:
['i brrui . afor Unix andnui . | i b for Windows. Install thesein the usual places; for Windows,

install mui . 1'i b inthe
<drive>:\Program Fil es\ M crosoft Visual Studio\VC98\Li b\

directory. Place the header filesalso in the usual place; for Windows use
<drive>:\Program Fil es\ M crosoft Visual Studio\VC98\incl ude\

Then ssimply add nui . | i b to your project files and you should be able to use MUI successfully.

A word to the wise...

The MUI control window has behaviors that are outside the programmer’ s control, so you must be
aware of some of these in order to avoid some surprises. The primary behavior to watch for is that
many of the MUI elements include a stream of events (and their associated redisplays) whenever
the cursor is within the element’ s region of the window. If your application was not careful to

1/1/02 Page 10.21

insulate itself against changes caused by redisplays, you may suddenly find the application
window showing changes when you are not aware of requesting them or of creating any events at
al. Soif you use MUI, you should be particularly conscious of the structure of your application
on redisplay and ensure that (for example) you clear any global variable that causes changesin
your display before you leave the display function.

1/1/02 Page 10.22

