A Brief MUI User Guide.

By Steve Baker
| ntroduction

The Micro User Interface (MUI) was written by Tom Davis (SGI) and comes as a part of the
GLUT (OpenGL Utilities Toolkit) release 3.6. MUI's mgjor drawback isthat it is completely
undocumented. The significance of MUI isthat it is written entirely on top of GLUT and
OpenGL - and as such should port cleanly across a wide range of UNIX, Mac, VMS and PC
operating systems and be compl etely window-system independant.

To the user, MUI has alook-and-feel similar to X-Motif. All functions use the usual SGI naming
conventions with a'mui’ prefix. The API is strongly object-oriented - but uses a C syntax. Here is
asnap shot of asimple MUI program:

NB: There appearsto be awidely used GUI for the Amigathat isalso called MUI - I'm pretty sure
it'sunrelated to thislibrary.

Disclaimer

This document is an atempt to make MUI at least partidly useful. Since | have built this
description solely upon the two available demo programs and from the library source code, | could
easily be hopelessly wrong. There will certainly be significant errors and omissions since I'm
writing it as| learn to use MUI myself.

Hopefully this documentation will only be a stop-gap measure until something official appearsin
some future GLUT/MUI release.

Getting Started

MUI comprises a bunch of header files (currently in the "include/mui” directory within the GLUT
release), plusasingle library file (‘libmui.a under UNIX, 'mui.lib" under Windoze).

A smple MUI program must start off by doing al the usual GLUT initialisations - for example:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <@/ gl . h>
#i nclude <@/ gl u. h>
#i nclude <G/ glut. h>
#i ncl ude <mui/ mui . h>

int min (int argc, char **argv)
{
gl utlnit WndowSi ze(640, 480);
glutinit(&argc, argv);
glutlnitDi splayMde (GLUT_RGB | G.UT_DOUBLE | GLUT_DEPTH);
gl ut CreateWndow ("My Application”);

The next step isto construct al the MUI objects that comprise your user interface - I'll cover that in
the next section (below).

Finally, you should call 'muilnit()' and enter the GLUT main loop:

muilnit () ;
gl ut Mai nLoop () ;
return 0 ;

}
The muitnit() function and GLUT.

Thisroutine iswhere MUI takes over most (if not all) of the GLUT callbacks:

gl ut Keyboar dFunc

gl ut MouseFunc

gl ut ReshapeFunc

gl ut Mot i onFunc

gl ut Passi veMot i onFunc
gl ut Di spl ayFunc

gl ut MenuSt at eFunc

Thisisunfortunate since it pretty much prevents you from catching any of these events yourself.
Adding Widgets.
Before you start adding widgets, you have to create a User Interface List.

Example:
mui NewUl List (1)
Every widget you add goesinto that Ul List.

User Interface Lists.

Y ou can manage multiple Ul listsusing these calls:

void nmui Newdl List(int listid) ;

voi d nmui AddToUl List(int listid, mui Cbject *obj) ;
void nui Set ActiveUl List (int listid) ;

int nui GetActiveUlList ()

Clearly (since there are no routines to remove an object from a UlList, or to delete an entire
UlLigt), it isintended that MUI user interfaces are somewhat static in nature.

Constructing a Menu Bar.

MUI menu bars are built from a bunch of GLUT popup menus which are then bound to a MUI
object.
Example:

int menus_for_nenubar [3] ;
/* Build three GLUT popups. LLox]

menus_for_nenubar [O] = glutCreateMenu (nmenu_cb) ;
gl ut AddMenukntry (, MENU_FI LE_NEW)
gl ut AddMenuEntry (" Open , MENU_FI LE_OPEN)
gl ut AddMenuEntry ("Save" , MENU_FI LE_SAVE)
gl ut AddMenuEntry ("SaveAs. MVENU_FI LE_SAVEAS)
gl ut AddMenuEntry ("Exit" , MENU FILE EXIT)
menus_for_nenubar [1] = glutCreateMenu (menu_cb) ;
gl ut AddMenuEntry ("Cut™ , MENU EDI T_CUT)
gl ut AddMenukEntry (" Copy" , MENU_EDI T_COPY)

gl ut AddMenuEntry ("Paste" , MENU EDI T_PASTE)
menus_for_nenubar [2] = glutCreateMenu (menu_cb)
gl ut AddMenuEntry ("About..." , MENU_HELP_ABOUT)
gl ut AddMenuEntry ("Hel p" , MENU HELP_HELP)

In this case, all the MENU_* constants would be #defined somewhere and the ‘menu_cb' function
would probably just be abig switch statement that performs the appropriate actions as each menu
item isinvoked. All of thisis covered in the GLUT documentation.

Next, you have to attach the GLUT menus to a menu bar:

mui Cbj ect *nenubar = mnui NewPul | down ()

mui AddPul | downEntry (menubar, "File", nmenus_for_nenubar[0], 0)
mui AddPul | downEntry (menubar, "Edit", nmenus_for_nenubar[1l], 0)
nmui AddPul | downEntry (menubar, "Hel p", nmenus_for_nenubar[2], 1)

The final argument to 'mui AddPulldownEntry' is a boolean which is TRUE for the 'HELP menu
(which is always on the extreme right of the menu bar in traditional GUI's) - and FALSE for all the
other entrieswhich are simply packed onto the bar from left to right.

Hereisthe menu bar API in full:

mui Qbj ect *mui NewPul | down()
void nui AddPul | downEntry (nmui Gbject *obj, char *title, i nt
glut_menu, int is_help) ;

NB. There seemsto be abug in MUI - if the GLUT window is ever resized - the menu bar can get
hidden - or positioned somewhere in the middle of the window instead of at the very top where it
belongs.

Buttons.

There are three different styles of button:
Button (with text inside).
Radio Button (with text alongside).

Tiny Radio Button (also with text alongside).

First, construct the button using one of these three constructor functions:
mui Qbj ect *mui NewButton (int xmin, int xmax, int ynmn, int ymx)
nmui Qbj ect *rmui NewRadi oButton (int xmin, int ymn)
nmui Qbj ect *nui NewTi nyRadi oButton (int xmn, int ymn)

If alabel isneeded for the button:

voi d nui LoadButton (nui Gbj ect *button, char *Iabel)

'Radio' buttons are often used when pressing one button of a group causes any depressed buttons
in that same group to turn off automatically. TO make this behaviour, you need to link all the
buttons of a particular group together:

voi d nmui Li nkButtons (nui Cbj ect *obj 1, nui Cbject *obj2)
Example:

mui bj ect *ml nmui NewRadi oButton (100, 100)
mui bj ect *nP mui NewRadi oButton (100, 120)
mui Qbj ect *nB mui NewRadi oButton (100, 140)

nmui Li nkButtons (nml, nR2)

nmui Li nkButtons (nm2, n8) ;
Sometimes you need to turn off all the buttonsin a group:
voi d nmui C earRadi o (nui Gbj ect *button)

Text Labels.
Text labels can be placed anywhere in the window using ether one of the following two
commands:

nui Qbj ect *nui NewLabel (int xmn, int ymn, char *label) ;
nmui Qbj ect *mnui NewBol dLabel (int xmin, int ymn, char *label) ;

The two calls are identical except that the second generates a label in bold-faced text. Y ou can
change the string in the |abel after creation using this:

voi d nui ChangelLabel (mui Cbject *obj, char *|abel)

TextBox
Thisisactualy atext entry box. Hereisthe API:

nmui Qbj ect *nui NewTextbox (int xmn, int xmax, int ymn);

char *nmui Get TBStri ng (nui Gbj ect *obj) ;
voi d nmui Cl ear TBString (mnui Cbj ect *obj) ;
voi d nmui Set TBStri ng (nui Gbj ect *obj, char *s) ;

The textbox allows the user to enter text which can be queried using muiGetTBString(), cleared
using muiClearTBString() or preset using mui SetTBString().

TextList
Sorry - | havn't documented these yet.

nmui Gbj ect *nui NewTextList (int xmn, int ymn, int xmax, int
l'istheight) ;

void mui Set TLTop (mui Cbj ect *obj, float p) ;

i nt mui Get TLSel ect edltem (nui Obj ect *obj) ;

void muiSet TLStrings (nui Object *obj, char **s)

void nmnui Set TLToplnt (nui Gbject *obj, int top) ;

Vertical Slider and Horizontal Slider
Sorry - | havn't documented these yet.

nmui Obj ect *nui NewsSlider (int xmin, int ymin, int ymax, int scenter,
int shal f);

nmui Cbj ect *rui NewHSlider (int xmin, int ymn, int xmax, int scenter,
int shal f);

float nmui GetVSval (mui Gbject *obj) ;

float nmui GetHSVal (mui Gbject *obj) ;

voi d nmui Set VSval ue (mui Cbj ect *obj, float val) ;

voi d nmui Set HSVal ue (mui Cbj ect *obj, float val) ;

voi d nmui Set VSArrowDel ta (nui Qbj ect *obj, int newd)

voi d mui Set HSArrowbDel ta (nui Qbj ect *obj, int newd)

General Functions - Applicable to all muiObjects.
All muiObjects share a collection of useful API.

MUI objects can be visible (ie displayed) or invisible (hidden), active (ie clickable) or inactive
(‘'greyed out’) and can be enabled or disabled (for a button, this means depressed or not depressed,
for atext box, the cursor ison or off, etc).

void mui SetVisible (nmui Gbject *obj, int state) ;
void nui Set Active (nuiObject *obj, int state) ;
voi d nui Set Enable (nui Object *obj, int state)
int nuiGetVisible (mui Cbject *obj) ;
int nuiGetActive (mui bject *obj) ;
int nui GetEnable (mui Qbject *obj) ;
All MUI objects has asingle integer (called the 'l D) which can contain arbitary user data.

void nui Set1 D (nui Gbject *obj, int id)

int nmuiGetlD (mui Cbject *obj) ;
Y ou can query the bounding box of a MUI object. (Note the order of the arguments - which is
different from the routines to create objects of a given size!)

voi d mui Get Qbj ect Si ze(nui Gbj ect *obj, int *xmin, int *ymn, int *xnax,
int *ymax);
Each object can have a callback function associated with it that is called under various user imput
conditions:

voi d nui Set Cal | back (mnui Cbj ect *obj, void (*chb)(rmui Cbject *,
enum mui Ret ur nval ue)) ;
enum mui Ret urnVal ue { MJI _NO _ACTI ON, MJ _SLI DER MOVE,
MJI _SLI DER_RETURN, MJl _SLI DER_SCROLLDOAN, MJl _SLI DER_SCROLLUP,
MUl _SLI DER _THUMB, MU _BUTTON_PRESS, MJ _TEXTBOX_RETURN,
MUl _TEXTLI ST_RETURN, MJ _TEXTLI ST_RETURN_CONFI RM };

The user callback function is passed the address of the muiObject that was clicked and also a
parameter indicating how the object was activated.

Misc. Functions
The following function allows the application to register a callback that is invoked whenever the
mouseis clicked and no MUI widget is present at that screen location.
voi d nmui Set NonMJl cal | back (void (*cb)(int, int)) ;
Theroutineis caled with the (x,y) coordinate of the mouse at the time.

